【题目】如图,菱形ABCD中,E是AD的中点,EF⊥AC交CB的延长线于点F.
(1)DE和BF相等吗?请说明理由.
(2)连接AF、BE,四边形AFBE是平行四边形吗?说明理由.
【答案】
【1】(1)相等,连接BD,证明四边形DEFB是平行四边形,则BF=DE=AE
【2】(2)是平行四边形,理由是AE平行且等于BF
【解析】试题分析:(1)、连接BD,AF,BE,根据菱形的性质得出AC⊥BD,结合EF⊥AC得出EF∥BD,结合ED∥FB得出四边形EDBF是平行四边形,从而得出结论;(2)、根据E为AD的中点得出AE=ED,则AE=BF,结合AE∥BF得出四边形AEBF为平行四边形,从而说明结论.
试题解析:(1)、连接BD,AF,BE, 在菱形ABCD中,AC⊥BD ∵EF⊥AC,
∴EF∥BD,又ED∥FB, ∴四边形EDBF是平行四边形,DE=BF,
(2)、∵E为AD的中点, ∴AE=ED,∴AE=BF, 又AE∥BF, ∴四边形AEBF为平行四边形,
即AB与EF互相平分.
科目:初中数学 来源: 题型:
【题目】下列说法:①经过两点有且只有一条直线;②直线比射线长;③两点之间的所有连线中直线最短;④连接两点的线段叫两点之间的距离;其中正确的有( )
A.0个B.1个C.2个D.3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:
第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,
第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,
第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,
第n次操作,分别作∠ABEn﹣1和∠DCEn﹣1的平分线,交点为En.
若∠En=1度,那∠BEC等于 度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.
(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于圆O,∠BAD=90°,AC为直径,过点A作圆O的切线交CB的延长线于点E,过AC的三等分点F(靠近点C)作CE的平行线交AB于点G,连结CG.
(1)求证:AB=CD;
(2)求证:CD2=BEBC;
(3)当CG=,BE=时,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:
(1)a= ,b= ,c= ;
(2)这个几何体最少由 个小立方体搭成,最多由 个小立方体搭成;
(3)当d=2,e=1,f=2时,画出这个几何体的左视图.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com