精英家教网 > 初中数学 > 题目详情
(2002•内江)如图,以Rt△BCF的斜边BC为直径作⊙O,A为上一点,且=,AD⊥BC,垂足为D,过A作AE∥BF交CB的延长线于E.
求证:
(1)AE是⊙O切线;
(2)
(3)若⊙O直径为d,则

【答案】分析:(1)要证AE是⊙O切线,只要证明AE⊥OA即可;
(2)根据已知利用相似三角形的判定,再根据相似比之间的转化从而得到结论;
(3)根据相似三角形的边对应成比例即可证得结论.
解答:证明:(1)连接AB,OA,
∵弧AB=弧AF,OA是⊙O的半径,
∴OA⊥BF.
∵AE∥EF,
∴AE⊥OA.
∵OA是⊙O的半径,
∴AE是⊙O切线.

(2)∵BC是⊙O的直径,
∴∠BAC=90°.
∵AD⊥BC,
∴△ABD∽△ABC,△ACD∽△ABC.
∴AB2=BD•BC,AC2=CD•BC,

∵AE是⊙O切线;
∴∠EAB=∠ECA.
∵∠E=∠E,
∴△ABE∽△AEC.


∵AE是⊙O切线.
∴AE2=BE•EC③
由①②③得,

(3)∵⊙O直径为d



点评:此题考查了圆的切线的判定与性质、相似三角形的判定与性质以及比例式的变形等知识.
练习册系列答案
相关习题

科目:初中数学 来源:2002年四川省内江市中考数学试卷(解析版) 题型:解答题

(2002•内江)如图,一次函数y=-x+3的图象交x轴于点A,交y轴于点Q,抛物线y=ax2+bx+c(a≠0)的顶点为C,其图象过A、Q两点,并与x轴交于另一个点B(B点在A点左侧),△ABC三内角∠A、∠B、∠C的对边为a,b,c.若关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等实数根,且a=b;
(1)试判定△ABC的形状;
(2)当时求此抛物线的解析式;
(3)抛物线上是否存在点P,使S△ABP=S四边形ACBQ?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2002•内江)如图,一次函数y=-x+3的图象交x轴于点A,交y轴于点Q,抛物线y=ax2+bx+c(a≠0)的顶点为C,其图象过A、Q两点,并与x轴交于另一个点B(B点在A点左侧),△ABC三内角∠A、∠B、∠C的对边为a,b,c.若关于x的方程a(1-x2)+2bx+c(1+x2)=0有两个相等实数根,且a=b;
(1)试判定△ABC的形状;
(2)当时求此抛物线的解析式;
(3)抛物线上是否存在点P,使S△ABP=S四边形ACBQ?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2002年四川省内江市中考数学试卷(解析版) 题型:填空题

(2002•内江)如图,以△ABC的BC边为直径的半圆交AB于D,交AC于E,EF⊥BC,垂足为F,BF:FC=5:1,AB=8cm,AE=2cm.则AD的长是    cm.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《圆》(06)(解析版) 题型:填空题

(2002•内江)如图,以△ABC的BC边为直径的半圆交AB于D,交AC于E,EF⊥BC,垂足为F,BF:FC=5:1,AB=8cm,AE=2cm.则AD的长是    cm.

查看答案和解析>>

同步练习册答案