精英家教网 > 初中数学 > 题目详情
13.如图,已知一次函数y=x+b与反比例函数y=$\frac{k}{x}$的图象交于A、B两点,其中点A的坐标为(2,3).
(1)求一次函数与反比例函数的解析式;
(2)求点B的坐标;
(3)请根据图象直接写出不等式x+b>$\frac{k}{x}$的解集.

分析 (1)把A的坐标代入一次函数与反比例函数的解析式即可求出解析式;
(2)把一次函数与反比例函数的解析式联立得出方程组,求出方程组的解即可;
(3)根据A、B的坐标结合图象即可得出答案.

解答 解:(1)把点A的坐标(2,3)代入一次函数的解析式中,可得:3=2+b,解得:b=1,
所以一次函数的解析式为:y=x+1;
把点A的坐标(2,3)代入反比例函数的解析式中,可得:k=6,
所以反比例函数的解析式为:y=$\frac{6}{x}$;
(2)把一次函数与反比例函数的解析式联立得出方程组,
可得:$\left\{\begin{array}{l}{y=x+1}\\{y=\frac{6}{x}}\end{array}\right.$,
解得:x1=2,x2=-3,
所以点B的坐标为(-3,-2);
(3)∵A(2,3),B(-3,-2),
∴使一次函数值大于反比例函数值的x的范围是:-3<x<0或x>2.

点评 本题考查了一次函数与反比例函数的解析式,用待定系数法求出一次函数的解析式,函数的图形等知识点的应用,主要考查学生的计算能力和观察图形的能力,用了数形结合思想.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.小亮家新房屋装修,购进了同为50×50cm规格但品牌不同的两种瓷砖,他从这两种瓷砖(都是正方形)中各随机抽取五块测量,并将这十块瓷砖的边长(单位:cm)记录下表中:
A种品牌50.149.950.249.850.0
B种品牌50.349.650.050.449.7
算得两种品牌瓷砖边长的平均数相等,则从边长上可确定更标准的品牌为A.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).
(1)求线段CD的长;
(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?
(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.
①t为何值时,l经过点C?
②求当l经过点D时t的值,并求出此时刻线段PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,BC是⊙O的直径,点A是⊙O上异于B,C的一点,则∠A的度数为(  )
A.60°B.70°C.80°D.90°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,这是某校初三年级同学们最喜爱的一项课外运动调查结果扇形图,但负责画此图的同学忘记了最喜爱篮球运动的人数.
(1)请你求出图中的x值;
(2)如果该年级最喜爱跳绳运动的同学有144人,那么这个年级共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,已知AB是⊙O的弦,CD是⊙O的直径,CD⊥AB,垂足为E,且点E是OD的中点,⊙O的切线BM与AO的延长线相交于点M,连接AC,CM.
(1)若AB=4$\sqrt{3}$,求$\widehat{AB}$的长;(结果保留π)
(2)求证:四边形ABMC是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,菱形ABCD的对角线AC与BD相交于点O,且BE∥AC,CE∥BD.
(1)求证:四边形OBEC是矩形;
(2)若菱形ABCD的周长是4$\sqrt{10}$,tanα=$\frac{1}{2}$,求四边形OBEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.下列计算正确的是(  )
A.22=4B.20=0C.2-1=-2D.$\sqrt{4}$=±2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如果调整价格,每涨1元,每星期要少卖8件;每降价1元,每星期可多卖12件.已知商品的进价为每件40元.
(1)设每件涨价x元,每星期售出商品的利润为y元,求出y关于x的函数关系式;
(2)设每件降价x元,每星期售出商品的利润为y元,求出y关于x的函数关系式;
(3)问如何定价才能使利润最大?

查看答案和解析>>

同步练习册答案