【题目】知二次函数y=ax2+bx+c(a≠0)图象如图所示,有下列5个结论:①abc<0;②b2<4ac;③4a+2b+c>0;④2a+b=0;⑤a+b<m(am+b)(m≠1的实数),其中结论正确的个数有( )
A.2个B.3个C.4个D.5个
【答案】B
【解析】
由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①由图象可知:a<0,b>0,c>0,abc<0,故①正确;
②抛物线与x轴有两个交点,则b2﹣4ac>0,即b2>4ac,故②错误;
③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故③正确;
④对称轴﹣=1,即2a+b=0,故④正确;
⑤当x=1时,y的值最大.此时,y=a+b+c,
而当x=m时,y=am2+bm+c,
所以a+b+c>am2+bm+c,
故a+b>am2+bm,即a+b>m(am+b),故⑤错误.
故正确的结论为①③④,
故选:B.
科目:初中数学 来源: 题型:
【题目】某中学积极组织学生开展课外阅读活动,为了解本校学生每周课外阅读的时间量t(单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A、B、C、D表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:
(1)求出x的值,并将不完整的条形统计图补充完整;
(2)若该校共有学生2500人,试估计每周课外阅读时间量满足2≤t<4的人数;
(3)若本次调查活动中,九年级(1)班的两个学习小组分别有3人和2人每周阅读时间量都在4小时以上,现从这5人中任选2人参加学校组织的知识抢答赛,求选出的2人来自不同小组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y= (k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是( )
A. (,0)B. (,0)C. (,0)D. (,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线,与x轴交于点C,点C在点D的左侧,与y轴交于点A.
求抛物线顶点M的坐标;
若点A的坐标为,轴,交抛物线于点B,求点B的坐标;
在的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线与图象G有一个交点,结合函数的图象,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2018年全国青少年禁毒知识竞赛开始以来,永州市青少年学生跃参如,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格.为了了解我市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图
(1)本次抽查的人数是 ;
(2)扇形统计图中不及格学生所占的圆心角的度数为 度;
(3)补全条形统计图;
(4)若某校有2000名学生,请你估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a与x轴交于A、B两点(点A在点B的左侧).
(Ⅰ)求出点A、B的坐标;
(Ⅱ)当a<0时,经过点A的直线l:y=kx+a与y轴负半轴交于点C,与抛物线的另一个交点为D,点E是抛物线上的一个动点,且在直线l上方.
①若△ACE的面积的最大值为,求a的值;
②设P是抛物线的对称轴上的一点,点Q在抛物线上,当以点A、D、P、Q为顶点的四边形构成矩形时,请直接写出此时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=mx2﹣(2m+1)x+m﹣5的图象与x轴有两个公共点.
(1)求m的取值范围;
(2)若m取满足条件的最小的整数,当n≤x≤1时,函数值y的取值范围是﹣6≤y≤24,求n的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,二次函数y=a(x+)(x﹣3)的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点M的纵坐标为-4.
(1)求出二次函数的解析式;
(2)如图1,若过点M作直线MN∥y轴,点P是直线MN上的一个动点,当PA+PC最小时,求点P的坐标.
(3)如图2,连结BC,在直线BC下方的抛物线上有一动点E,求△BCE面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com