分析 (1)把B点的坐标分别代入一次函数y1=k1x+2与反比例函数${y_2}=\frac{k_2}{x}$的解析式即可求出k2、k1的值;
(2)先求出四边形ODAC的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的解析式即可得出点P的坐标.
解答 解:(1)∵一次函数y1=k1x+2与反比例函数${y_2}=\frac{k_2}{x}$的图象交于点A(4,m)和B(-8,-2),
∴k2=(-8)×(-2)=16,-2=-8k1+2,
∴k1=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$,16;
(2)由(1)知,y1=$\frac{1}{2}$x+2,y2=$\frac{16}{x}$,
∴m=4,点C的坐标是(0,2)点A的坐标是(4,4),
∴CO=2,AD=OD=4,
∴S四边形ODAC=$\frac{1}{2}$(2+4)×4=12.
∵S梯形ODAC:S△ODE=3:1,
∴S△ODE=$\frac{1}{3}$S梯形ODAC=$\frac{1}{3}$×12=4,
即$\frac{1}{2}$OD•DE=4,
∴DE=2,
∴点E的坐标为(4,2).
又点E在直线OP上,
∴直线OP的解析式是y=$\frac{1}{2}$x.
∴直线OP与y2=$\frac{16}{x}$的图象在第一象限内的交点P的坐标为(4$\sqrt{2}$,2$\sqrt{2}$).
点评 本题考查了反比例函数与一次函数的交点问题,待定系数法求反比例函数与一次函数的解析式,三角形、梯形的面积,在解题时要综合应用反比例函数的图象和性质以及求一次函数与反比例函数交点坐标是本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{1.5}$ | B. | $\sqrt{8}$ | C. | $\frac{1}{\sqrt{2}}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{9}{4}$π | B. | 3π | C. | $\frac{29}{12}$π | D. | $\frac{1}{3}$π |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com