【题目】如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.
【答案】(1)B(-1,0);C(0,4);;(2)P(2,6);(3)点或
【解析】
试题(1)根据A的坐标,即可求得OA的长,则B、C的坐标即可求得,然后利用待定系数法即可求得函数的解析式;
(2)分点A为直角顶点时,和C的直角顶点两种情况讨论,根据OA=OC,即可列方程求解;
(3)据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短,根据等腰三角形的性质,D是AC的中点,则DF=OC,即可求得P的纵坐标,代入二次函数的解析式,即可求得横坐标,得到P的坐标.
解:(1)由A(4,0),可知OA=4,
∵OA=OC=4OB,
∴OA=OC=4,OB=1,
∴C(0,4),B(﹣1,0).
设抛物线的解析式是y=ax2+bx+c,
则,
解得:,
则抛物线的解析式是:y=﹣x2+3x+4;
(2)存在.
第一种情况,当以C为直角顶点时,过点C作CP1⊥AC,交抛物线于点P1.过点P1作y轴的垂线,垂足是M.
∵∠ACP1=90°,
∴∠MCP1+∠ACO=90°.
∵∠ACO+∠OAC=90°,
∴∠MCP1=∠OAC.
∵OA=OC,
∴∠MCP1=∠OAC=45°,
∴∠MCP1=∠MP1C,
∴MC=MP1,
设P(m,﹣m2+3m+4),
则m=﹣m2+3m+4﹣4,
解得:m1=0(舍去),m2=2.
∴﹣m2+3m+4=6,
即P(2,6).
第二种情况,当点A为直角顶点时:过A作AP2,交抛物线于点P2,过点P2作y轴的垂线,垂足是N,AP2交y轴于点F.
∴P2N∥x轴,
由∠CAO=45°,
∴∠OAP2=45°,
∴∠FP2N=45°,AO=OF.
∴P2N=NF,
设P2(n,﹣n2+3n+4),
则n=(﹣n2+3n+4)+4,
解得:n1=﹣2,n2=4(舍去),
∴﹣n2+3n+4=﹣6,
则P2的坐标是(﹣2,﹣6).
综上所述,P的坐标是(2,6)或(﹣2,﹣6);
(3)连接OD,由题意可知,四边形OFDE是矩形,则OD=EF.
根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.
由(1)可知,在直角△AOC中,OC=OA=4,
根据等腰三角形的性质,D是AC的中点.
又∵DF∥OC,
∴DF=OC=2,
∴点P的纵坐标是2.
则﹣x2+3x+4=2,
解得:x=,
∴当EF最短时,点P的坐标是:(,2)或(,2).
科目:初中数学 来源: 题型:
【题目】某校举行全员赛课比赛,八年级3位数学老师分别记为A,B,C,(其中A是女老师,B,C是男老师)被安排在星期二下午三节上,他们通过抽签决定上课顺序。
(1)女老师A不希望上第一节课,却偏偏抽到上第一节课的概率是
(2)试用画树状图或列表的方法表示这次抽签所有可能的结果,并求女老师A比男老师B先上课的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.
(1)完成下列填空:
已知 | 用“<”或“>”填空 |
5+2_____3+1 | |
﹣3﹣1_____﹣5﹣2 | |
1﹣2_____4+1 |
(2)一般地,如果那么a+c_____b+d(用“<”或“>”填空).请你说明上述性质的正确性.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形纸片中,对角线、交于点,折叠正方形纸片,使落在上,点恰好与上的点重合.展开后,折痕分别交、于点、.连接.下列结论:①;②;③;④四边形是菱形;⑤.
其中正确结论的序号是( )
A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小方与小辉在玩军棋游戏,他们定义了一种新的规则,用军棋中的“工兵”、“连长”、“地雷”比较大小,共有6个棋子,分别为1个“工兵”,2个“连长”,3个“地雷”游戏规则如下:①游戏时,将棋反面朝上,两人随机各摸一个棋子进行比赛,先摸者摸出的棋不放回;②“工兵”胜“地雷”,“地雷”胜“连长”,“连长”胜“工兵”;③相同棋子不分胜负.
(1)若小方先摸,则小方摸到“排长”的事件是 ;若小方先摸到了“连长”,小辉在剩余的5个棋子中随机摸一个,则这一轮中小方胜小辉的概率为 .
(2)如果先拿走一个“连长”,在剩余的5个棋子中小方先摸一个棋子,然后小辉在剩余的4个棋子中随机摸一个,求这一轮中小方获胜的概率 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,点A到直线BC的距离为d,AB>AC>d,以A为圆心,AC为半径画圆弧,圆弧交直线BC于点D,过点D作DE∥AC交直线AB于点E,若BC=4,DE=1,∠EDA=∠ACD,则AD=__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=2x与反比例函数y=(x>0)的图象交于点A(4,n),AB⊥x轴,垂足为B.
(1)求k的值;
(2)点C在AB上,若OC=AC,求AC的长;
(3)点D为x轴正半轴上一点,在(2)的条件下,若S△OCD=S△ACD,求点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家以、两种原料,利用不同的工艺手法生产出了甲、乙、丙三种袋装产品,其中,甲产品每袋含千克原料、千克原料;乙产品每袋含千克原料、千克原料;丙产品每袋含有千克原料、千克原料.若丙产品每袋售价元,则利润率为.某节庆日,该电商进行促销活动,将甲、乙、丙各一袋合装成礼品盒,每购买一个礼品盒可免费赠送一袋乙产品,这样即可实现利润率为,则礼盒售价为_____元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com