【题目】如图,过点A(5,)的抛物线y=ax2+bx的对称轴是x=2,点B是抛物线与x轴的一个交点,点C在y轴上,点D是抛物线的顶点.
(1)求a、b的值;
(2)当△BCD是直角三角形时,求△OBC的面积;
(3)设点P在直线OA下方且在抛物线y=ax2+bx上,点M、N在抛物线的对称轴上(点M在点N的上方),且MN=2,过点P作y轴的平行线交直线OA于点Q,当PQ最大时,请直接写出四边形BQMN的周长最小时点Q、M、N的坐标.
【答案】(1)(2)当△BDC为直角三角形时,△OBC的面积是或;(3)点Q、M、N的坐标分别为,,.
【解析】
(1)把点A的坐标代入函数解析式,利用对称轴方程,联立方程组,解方程组求得a、b的值;
(2)设点C的坐标是(0,m).由于没有指明直角△BCD中的直角,所以需要分类讨论:当∠CBD=90°、∠CDB=90°、∠BCD=90°时,利用勾股定理列出关于m的方程,通过解方程求得m的值;然后利用三角形的面积公式解答;
(3)利用待定系数法确定直线OA解析式为.由抛物线上点的坐标特征和两点间的距离公式求得:PQ=x(x23x)=x2+x=(x)2+,所以利用二次函数最值的求得推知:当PQ最大时,线段BQ为定长.又因为MN=2,所以要使四边形BQMN的周长最小,只需QM+BN最小.利用轴对称-最短路径问题得到点Q.最后利用方程思想解答.
解:(1)∵过点A(5, )的抛物线y=ax2+bx的对称轴是x=2,
∴ ,
解之,得;
(2)设点C的坐标是(0,m).由(1)可得抛物线,
∴抛物线的顶点D的坐标是(2,﹣3),点B的坐标是(4,0).
当∠CBD=90°时,有BC2+BD2=CD2.
∴ ,
解之,得,
∴;
当∠CDB=90°时,有CD2+BD2=BC2.
∴,
解之,得,
∴;
当∠BCD=90°时,有CD2+BC2=BD2.
∴,此方程无解.
综上所述,当△BDC为直角三角形时,△OBC的面积是或;
(3)设直线y=kx过点A(5, ),可得直线.
由(1)可得抛物线,
∴PQ=x(x23x)=x2+x=(x)2+,
∴当x=时,PQ最大,此时Q点坐标是 .
∴PQ最大时,线段BQ为定长.
∵MN=2,
∴要使四边形BQMN的周长最小,只需QM+BN最小.
将点Q向下平移2个单位长度,得点,作点关于抛物线的对称轴的对称点,直线BQ2与对称轴的交点就是符合条件的点N,此时四边形BQMN的周长最小.
设直线y=cx+d过点和点B(4,0),
则,
解之,得,
∴直线过点Q2和点B.
解方程组 得,
∴点N的坐标为,∴点M的坐标为,
所以点Q、M、N的坐标分别为 , ,.
科目:初中数学 来源: 题型:
【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.
(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,∠BAC<60°,AD为的直径,BE⊥AC交AD于P,BE的延长线交⊙O于点F,连结AF,CF,AD交BC于G,在不添加其他辅助线的情况下,图中除AB=AC外,相等的线段共有( )对.
A.2B.3C.4D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)对称轴为直线x=﹣1,其部分图象如图所示,则下列结论:
①b2﹣4ac>0;
②2a=b;
③t(at+b)≤a﹣b(t为任意实数);
④3b+2c<0;
⑤点(﹣,y1),(,y2),(,y3)是该抛物线上的点,且y1<y3<y2,
其中正确结论的个数是( )
A.5B.4C.3D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识改变世界,科技改变生活.导航装备的不断更新极大方便了人们的出行.如图,某校组织学生乘车到黑龙滩(用C表示)开展社会实践活动,车到达A地后,发现C地恰好在A地的正北方向,且距离A地13千米,导航显示车辆应沿北偏东60°方向行驶至B地,再沿北偏西37°方向行驶一段距离才能到达C地,求B、C两地的距离.(参考数据:sin53°≈,cos53°≈,tan53°≈)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知Rt△ABC中,∠C=90°,AD是∠BAC的角平分线.
(1)请尺规作图:作⊙O,使圆心O在AB上,且AD为⊙O的一条弦.(不写作法,保留作图痕迹);
(2)判断直线BC与所作⊙O的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个四位数,记千位数字与个位数字之和为,十位数字与百位数字之和为,如果,那么称这个四位数为“对称数”
最小的“对称数”为 ;四位数与之和为最大的“对称数”,则的值为 ;
一个四位的“对称数”,它的百位数字是千位数字的倍,个位数字与十位数字之和为,且千位数字使得不等式组恰有个整数解,求出所有满足条件的“对称数”的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在坐标平面内,三个顶点的坐标分别为A(0,4),B(2,2),C(4,6)(正方形网格中,每个小正方形的边长为1)
(1)画出△ABC向下平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)以点O为位似中心,在第三象限画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为1:2,直接写出点C2的坐标和△A2B2C2的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com