精英家教网 > 初中数学 > 题目详情
如图,已知在平面直角坐标系中,直角梯形ABCD,ABCD,AD=CD,∠ABC=90°,A、B在x轴上,点D在y轴上,若tan∠OAD=
4
3
,B点的坐标为(5,0).
(1)求直线AC的解析式;
(2)若点Q、P分别从点C、A同时出发,点Q沿线段CA向点A运动,点P沿线段AB向点B运动,Q点的速度为每秒
5
个单位长度,P点的速度为每秒2个单位长度,设运动时间为t秒,△PQE的面积为S,求S与t的函数关系式(请直接写出自变量t的取值范围);
(3)在(2)的条件下,过P点作PQ的垂线交直线CD于点M,在P、Q运动的过程中,是否在平面内有一点N,使四边形QPMN为正方形?若存在,求出N点的坐标;若不存在,请说明理由.
(1)∵tan∠OAD=
4
3
,且tan∠OAD=
DO
AO

DO
AO
=
4
3

设DO=4x,AO=3x,在Rt△AOD中,由勾股定理得:
AD=4x.
∵AD=CD,
∴CD=5x,
∵ABCD,∠ABC=90°,
∴∠DOB=∠ODC=∠DCB=90°,
∴四边形OBCD是矩形,
∴OB=CD=5x.
∵B(5,0),
∴OB=5,
∴5x=5,
∴x=1,
∴AO=3,DO=4,
∴A(-3,0),C(5,4).
设直线AC的解析式为,y=kx+b,由题意得
0=-3k+b
4=5k+b

解得:
k=
1
2
b=
3
2

故直线AC的解析式为:y=
1
2
x+
3
2


(2)∵当x=0时,y=
3
2

∴E(0,
3
2
),
∴OE=
3
2

∴DE=
5
2

在Rt△CDE和Rt△AOE中由勾股定理得:
CE=
5
5
2
,AE=
3
5
2

∴AC=4
5

∵OA=3,OB=5,
∴AB=8,
∵BC=4,
∴tan∠BAC=
1
2
,sin∠BAC=
5
5

∴当0<t<
5
2
时,S=
2t(4
5
-
5
t)
5
5
2
-
2t×
3
2
2
,=-t2+
5
2
t;
5
2
<t≤4时,S=
2t×
3
2
2
-
2t(4
5
-
5
t)
5
5
2
=t2-
5
2
t;
综上所述,
S=
-t2+
5
2
t(0<t<
5
2
)
t2-
5
2
t(
5
2
<t≤4)


(3)①如图1,作NH⊥CD与H,MG⊥AB与G,QR⊥AB与R,
∴∠MHN=∠MGP=∠PRQ=90°,
∵四边形QPMN为正方形,
∴MP=MN=PQ,∠NMP=∠MPQ=90°,
∴∠NMH=∠GMP=∠QPR,
∵在△MHN和△PRQ中,
∠MHN=∠PRQ
∠NMH=∠QPR
MN=QP

∴△MHN≌△PRQ(AAS).
∴NH=QR.
在△GMP和△RPQ中,
∠MGP=∠PRQ
∠GMP=∠QPR
MP=PQ

∴△GMP≌△RPQ(AAS),
∴GM=RP.GP=QR.
∵GM=OD=4cm,
∴RP=4cm.
AR
4
5
-
5
t
=
4
5
8

∴AR=8-2t,
∴PR=8-2t-2t=4,
∴t=1,
∴AR=6,AP=2,
∴PO=1,
QR
AR
=
1
2

∴QR=3,
∴GO=4,
∴HN=3,MH=4,.
∴H、O在同一直线上,
∴N(0,7)
②如图2,作NS⊥CD于S,QH⊥AB于H,MR⊥AB于R,
∴∠NSM=∠QHP=∠PRM=90°,
∵四边形PQNM是正方形,
∴∠QPM=∠PMN=90°,PQ=PM=MN,
∴∠HPQ=∠PMR=∠NMS,
∴同①可以得出△NSM≌△QHP≌△PRM,
∴NS=QH=PR,HP=MR=SM=4,
AH
AQ
=
8
4
5

AH
4
5
-
5
t
=
8
4
5

∴AH=8-2t,
∴2t-(8-2t)=4,
∴t=3,
∴AH=2,HO=1,
∴QH=SN=1,OR=4,
∴SM=OR,
∴S在y轴上,
∴N(0,5)
综上所述,N点的坐标为:(0,7)或(0,5)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

甲乙两辆货车分别从M、N两地出发,沿同一条公路相向而行,当到达对方的出发地后立即装卸货物,5分钟后再按原路以原速度返回各自的出发地,已知M、N两地相距100千米,甲车比乙车早5分钟出发,甲车出发10分钟时两车都行驶了10千米,图表示甲乙两车离各自出发地的路程y(千米)与甲车出发时间x(分)的函数图象.
(1)甲车从M地出发后,经过多长时间甲乙两车第一次相遇?
(2)乙车从M地出发后,经过多长时间甲乙两车与各自出发地的距离相等?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙H与x轴交于A、B两点,与y轴交于C、D两点,圆心H的坐标是(1,-1),半径是
5

(1)求经过点D的切线的解析式;
(2)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

百舸竞渡,激情飞扬.为纪念爱国诗人屈原,邵阳市在资江河隆重举行了“海洋明珠杯”龙舟赛.图(十二)是甲、乙两支龙舟队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象,请你根据图象回答下列问题:
(1)1.8分钟时,哪支龙舟队处于领先地位?
(2)在这次龙舟比赛中,哪支龙舟队先到达终点?
(3)比赛开始多少时间后,先到达终点的龙舟队就开始领先?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

小明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:km)与时间t(单位:min)之间的函数关系如图所示.放学后如果按原路返回,且往返过程中,上坡速度及下坡速度分别相同,那么他回来时走这段路所用的时间为______mim.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商场计划投入一笔资金采购一批紧俏商品,经市场调研发现,如果本月初出售,可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售可获利25%,但要支付仓储费8000元.设商场投入资金x元,请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是(  )
A.1B.3C.3(m-1)D.
3
2
(m-2)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

为了促进长三角区域的便捷沟通,实现节时、节能,杭州湾跨海大桥于2008年5月1日通车,下表是宁波到上海两条线路的有关数据:
线路弯路(宁波-杭州-上海)直路(宁波-跨海大桥-上海)
路程316公里196公里
过路费140元180元
(1)若小车的平均速度为80公里/小时,则小车走直路比走弯路节省多少时间?
(2)若小车每公里的油耗为x升,汽油价格为5.00元/升,问x为何值时,走哪条线路的总费用较少(总费用=过路费+油耗费).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC是矩形,点A、C的坐标分别为(3,0)、(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
1
2
x+b
交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,DE=
5
,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

同步练习册答案