精英家教网 > 初中数学 > 题目详情
如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP.
(1)求△OPC的最大面积;
(2)求∠OCP的最大度数;
(3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线.

试题分析:(1)在△OPC中,底边OC长度固定,因此要想△OPC的面积最大,则要OC边上的高最大;由图形可知,当OP⊥OC时高最大;
(2)要想∠OCP的度数最大,由图形可知当PC与⊙O相切才能满足,根据切线的性质即可求得;
(3)连接AP,BP通过△ODB≌△BPC可求得DP⊥PC,从而求得PC是⊙O的切线
试题解析:(1)∵AB=4,
∴OB=2,OC=OB+BC=4.
在△OPC中,设OC边上的高为h,
∵S△OPC=OC•h=2h,
∴当h最大时,S△OPC取得最大值.
观察图形,当OP⊥OC时,h最大,如答图1所示:

此时h=半径=2,S△OPC=2×2=4.
∴△OPC的最大面积为4.
(2)当PC与⊙O相切时,∠OCP最大.如答图2所示:

∵tan∠OCP=
∴∠OCP=30°
∴∠OCP的最大度数为30°.
(3)证明:如答图3,连接AP,BP.

∴∠A=∠D=∠APD=∠ABD,
∵∠AOP=∠DOB
∴AP=BD,
∵CP=DB,
∴AP=CP,
∴∠A=∠C
∴∠A=∠D=∠APD=∠ABD∠C,
在△ODB与△BPC中

∴△ODB≌△BPC(SAS),
∴∠D=∠BPC,
∵PD是直径,
∴∠DBP=90°,
∴∠D+∠BPD=90°,
∴∠BPC+∠BPD=90°,
∴DP⊥PC,
∵DP经过圆心,
∴PC是⊙O的切线.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.
(1)求证:CB∥PD;
(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.
(1)求证:△CDE∽△CAD;
(2)若AB=2,AC=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,P为AB延长线上的一个动点,过点P作⊙O的切线,切点为C,连接AC,BC,作∠APC的平分线交AC于点D.
下列结论正确的是    (写出所有正确结论的序号)
①△CPD∽△DPA;
②若∠A=30°,则PC=BC;
③若∠CPA=30°,则PB=OB;
④无论点P在AB延长线上的位置如何变化,∠CDP为定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )
 
A.30°        B.45°        C.60°        D.40°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA,PB分别切⊙O于点A、B,点C在⊙O上,且∠ACB=50°,则∠P=  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

一圆锥体形状的水晶饰品,母线长是10cm,底面圆的直径是5cm,点A为圆锥底面圆周上一点,从A点开始绕圆锥侧面缠一圈彩带回到A点,则彩带最少用多少厘米(接口处重合部分忽略不计)(  )
A.10πcmB.10cmC.5πcmD.5cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列命题中,正确的是(  )
A.经过两点只能作一个圆
B.垂直于弦的直径平分弦所对的两条弧
C.圆是轴对称图形,任意一条直径是它的对称轴
D.平分弦的直径必平分弦所对的两条弧

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的侧面积是(  )
A.36лB.18лC.12лD.9л

查看答案和解析>>

同步练习册答案