精英家教网 > 初中数学 > 题目详情
4、如图,AB是半圆O的直径,C是半圆上一个动点,AD、BD分别平分∠BAC和∠ABC,延长AD分别与BC、半圆O交于点F、E,连接BE、CE.
(1)证明:△ABE∽△BFE;
(2)证明:△BDE是等腰直角三角形;
(3)如果四边形ABEC是梯形,试求∠ABC的大小.
分析:(1)需证明∠CBE=∠BAE,根据同弧所对的圆周角相等和角平分线的定义可证得;
(2)AB是半圆O的直径,那么∠DEB=90°,再证明∠EDB=∠EBD即可,可根据∠EDB=∠BAE+∠ABD,∠EBD=∠CBE+∠FB和(1)的结论证明;
(3))由于四边形ABEC是梯形,就有CE∥AB,可得∠CEA=∠BAE,可得∠CAE=∠BAE=∠ABC,又∠ACB=90°,∠ABC+∠CAE+∠BAE=90°(即3∠ABC=90°,∴∠ABC=30°).
解答:证明:(1)∵AD平分∠BAC,
∴∠CAE=∠BAE.(1分)
又∵∠CAE=∠CBE(同弧所对的圆周角相等),
∴∠CBE=∠BAE.(2分)
又∵∠AEB=∠BEF,
∴△ABE∽△BFE.

(2)∵AB是半圆O的直径,
∴∠DEB=90°.(4分)
又∵AD平分∠BAC,BD平分∠ABC,
∴∠CAE=∠BAE,∠ABD=∠FBD.
又∵∠EDB=∠BAE+∠ABD,,
∠EBD=∠CBE+∠FBD
∠CAE=∠CBE(同弧所对的圆周角相等),
∴∠EDB=∠EBD.(5分)
∴△BDE是等腰直角三角形.

(3)∵四边形ABEC是梯形,
∴CE∥AB.
∴∠CEA=∠BAE.
又∵AD平分∠BAC,
∴∠CAE=∠BAE.
又∵∠CEA=∠ABC(同弧所对的圆周角相等),
∴∠CAE=∠BAE=∠ABC.
又∵∠ACB=90°,
∴∠ABC+∠CAE+∠BAE=90°(即3∠ABC=90°).
∴∠ABC=30°.
点评:此题综合考查了相似三角形的判定、角平分线的定义、圆周角定理等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过几秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是半圆O的直径,OD是半径,BM切半圆于点B,OC与弦AD平行交BM于点C.
(1)求证:CD是半圆O的切线;
(2)若AB的长为4,点D在半圆O上运动,当AD的长为1时,求点A到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,点D是半圆上一动点,AB=10,AC=8,当△ACD是等腰三角形时,点D到AB的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,以OA为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E,则下列结论:①S△O′OE=
1
2
S△AOC2;②点D时AC的中点;③
AC
=2AD;④四边形O′DEO是菱形.其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,F为垂足,交AC于点C使∠BED=∠C.请判断直线AC与圆O的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案