精英家教网 > 初中数学 > 题目详情
如图,正方形ABCD的面积为5,AB⊥BC.
(1)如果点G、E分别在AB、BC上,FE⊥BC,说明∠CHE=∠CGB的理由.
(2)如果四边形BEFG是正方形,且它的面积为3,求三角形GCE的面积.
分析:(1)根据垂直的定义可得∠B=∠FEC=90°,再根据同位角相等,两直线平行求出EF∥AB,然后根据两直线平行,同位角相等即可得证;
(2)根据正方形的面积求出BC、BE的长,然后求出CE的长,再根据三角形的面积公式列式进行计算即可得解.
解答:解:(1)∵AB⊥BC,FE⊥BC (已知),
∴∠B=∠FEC=90°(垂直的意义),
∴EF∥AB (同位角相等,两直线平行),
∴∠CHE=∠CGE (两直线平行,同位角相等);

(2)∵正方形ABCD与BEFG的面积分别为5、3,
∴它们的边长分别为BC=
5
、BE=
3

∴CE=BC-BE=
5
-
3

∴△GCE的面积为=
1
2
CE•GB=
1
2
5
-
3
)×
3
=
1
2
15
-
3
2
点评:本题考查了平行线的判定与性质,正方形的性质,主要利用了正方形的面积公式,三角形的面积,是基础题,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

19、如图:正方形ABCD,M是线段BC上一点,且不与B、C重合,AE⊥DM于E,CF⊥DM于F.求证:AE2+CF2=AD2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,E点在BC上,AE平分∠BAC.若BE=
2
cm,则△AEC面积为
 
cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中数学 来源: 题型:

17、如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是
16

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.
(1)若ED:DC=1:2,EF=12,试求DG的长.
(2)观察猜想BE与DG之间的关系,并证明你的结论.

查看答案和解析>>

同步练习册答案