精英家教网 > 初中数学 > 题目详情
四边形ABCD是正方形.
(1)如图1,点G是BC边上任意一点(不与B、C两点重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;
(2)在(1)中,线段EF与AF、BF的等量关系是
 
(直接写出结论即可,不需要证明);
(3)如图2,点G是CD边上任意一点(不与C、D两点重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.那么图中全等三角形是
 
,线段EF与AF、BF的等量关系是
 
(直接写出结论即精英家教网可,不需要证明).
分析:(1)根据正方形的性质可知:△ABF≌△ADE;
(2)利用全等三角形的性质,AE=BF,AF=DE,得出AF-BF=EF;
(3)同理可得出图(2),△ABF≌△DAE,EF=BF-AF.
解答:(1)证明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF与△DAE中
∠ABF=∠DAE
∠AFB=∠DEA=90°
AB=DA

∴△ABF≌△DAE(AAS).

(2)解:EF=AF-BF.
∵△ABF≌△DAE,
∴AE=BF,
∵EF=AF-AE,
∴EF=AF-BF.

(3)解:△ABF≌△DAE.EF=BF-AF.
证明:在正方形ABCD中,AB=AD,∠BAD=90°,
∴∠BAF+∠DAE=90°.
在Rt△ABF中,∠BAF+∠ABF=90°,
∴∠ABF=∠DAE.
在△ABF与△DAE中
∠ABF=∠DAE
∠AFB=∠DEA=90°
AB=DA

∴△ABF≌△DAE(AAS).
∴AE=BF,
∴EF=AE-AF=BF-AF.
点评:主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件,从而判定全等后利用全等三角形的性质解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连接CD.
精英家教网
(1)填空:如图1,AC=
 
,BD=
 
;四边形ABCD是
 
梯形;
(2)请写出图1中所有的相似三角形;(不含全等三角形)
(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持△ABD不动,将△ABC向x轴的正方向平移到△FGH的位置,FH与BD相交于点P,设AF=t,△FBP面积为S,求S与t之间的函数关系式,并写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

课题学习:
(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是
正方
正方
形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是
形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是
形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:
S1=2S2
S1=2S2

(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:广东省中考真题 题型:解答题

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边 AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.
(1)填空:如图1,AC= _____,BD=_____ ;四边形ABCD是_____ 梯形.
(2)请写出图1中所有的相似三角形(不含全等三角形)
(3)如图2,若以AB所在直线为x轴,过点A垂直于AB的直线为y轴建立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向x轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD。
(1)填空:如图1,AC=______,BD=______;四边形ABCD是______梯形;
(2)请写出图1中所有的相似三角形(不含全等三角形);
(3)如图2,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图2的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边

AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.

(1)填空:如图9,AC=         ,BD=         ;四边形ABCD是       梯形.

(2)请写出图9中所有的相似三角形(不含全等三角形).

(3)如图10,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.

 


查看答案和解析>>

同步练习册答案