精英家教网 > 初中数学 > 题目详情
5.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E(0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.
(1)填空:点A坐标为(1,4),抛物线的解析式为y=-x2+2x+3;
(2)在图1中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q在线段CE上从点C向E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.连接PQ,是否存在实数t,使得PQ所在的直线经过点D,若存在,求出t的值;若不存在,请说明理由;

(3)在图2中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P作PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?

分析 (1)由矩形的性质可直接求得A点坐标,可设顶点式方程,把C点坐标代入可求得抛物线的解析式;
(2)根据题意表示出P,Q点坐标,再利用待定系数法求出PQ所在直线解析式,进而将D点代入求出答案;
(3)先求得直线AC的解析式,可分别用t表示出P点和Q点的坐标,从而可求得FQ的长,可用t表示出△ACQ的面积,再根据二次函数的性质可求得其最大值.

解答 解:(1)∵抛物线对称轴为x=1,
∴OB=1,
∵E点坐标为(0,4),
∴AB=OE=4,
∴A点坐标为(1,4),
可设抛物线解析式为y=a(x-1)2+4,
把(3,0)代入可解得a=-1,
∴抛物线解析式为y=-(x-1)2+4=-x2+2x+3,
故答案为:(1,4);y=-x2+2x+3;

(2)如图1,过点Q作QF⊥OC于点F,
可得:QF∥EO,
则△QFC∽△EOC,
故$\frac{QF}{EO}$=$\frac{QC}{EC}$=$\frac{FC}{CO}$,
∵CO=3,EO=4,QC=2t,
∴解得:QF=$\frac{8}{5}$t,FC=$\frac{6}{5}$t,
则Q(3-$\frac{6}{5}$t,$\frac{8}{5}$t),
P(t,0),设直线PQ的解析式为:y=dx+e,
则$\left\{\begin{array}{l}{dt+e=0}\\{(3-\frac{6}{5}t)d+e=\frac{8}{5}t}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{d=\frac{-8t}{11t-15}}\\{e=\frac{8{t}^{2}}{11t-15}}\end{array}\right.$,
故直线PQ的解析式为:y=$\frac{-8t}{11t-15}$x+$\frac{8{t}^{2}}{11t-15}$,
当PQ所在的直线经过点D,
则4=$\frac{-8t}{11t-15}$×3+$\frac{8{t}^{2}}{11t-15}$,
整理得:2t2-17t+15=0,
解得:t1=7.5(不合题意舍去),t2=1,
故PQ所在的直线经过点D,t的值为1;

(3)设直线AC的解析式为y=kx+b,
把A、C两点坐标代入可得$\left\{\begin{array}{l}{k+b=4}\\{3k+b=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=-2}\\{b=6}\end{array}\right.$,
∴直线AC的解析式为y=-2x+6.
∵P(1,4-t),
∴将y=4-t代入y=-2x+6中,得x=1+$\frac{t}{2}$,
∴Q点的横坐标为1+$\frac{t}{2}$.
将x=1+$\frac{t}{2}$代入y=-(x-1)2+4中,得y=4-$\frac{{t}^{2}}{4}$,
∴Q点的纵坐标为4-$\frac{{t}^{2}}{4}$.
∴QF=(4-$\frac{{t}^{2}}{4}$)-(4-t)=t-$\frac{{t}^{2}}{4}$.
∴S△ACQ=S△AFQ+S△CFQ
=$\frac{1}{2}$FQ•AG+$\frac{1}{2}$FQ•DG
=$\frac{1}{2}$FQ(AG+DG)
=$\frac{1}{2}$FQ•AD
=$\frac{1}{2}$×2(t-$\frac{{t}^{2}}{4}$)
=-$\frac{1}{4}$(t-2)2+1.
∴当t=2时,△ACQ的面积最大,最大值是1.

点评 本题主要考查二次函数的综合应用,涉及待定系数法、三角形面积求法、二次函数的性质等知识点.在(1)中确定出A点坐标是解题的关键,在(3)中用t表示出QF是解题的关键.本题考查知识点较多,综合性较强,难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.
(1)求CD的长及∠1的度数;
(2)若点G恰好在BC上,求此时x的值;
(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.检修小组乘汽车在东西方向的高速公路上检修线路,约定向东行驶为正,向西行驶为负.某天自基地出发到收工时,所走的十段路程(单位:千米)记录为:+22,-3,+4,-2,-8,+17,-4,-3,+10,+7
(1)收工时检修小组在基地的什么方向?距基地多远?
(2)若检修车每100千米耗油16升,求自基地出发到收工共耗油多少升?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若|x-3|+|y+15|=0,则3x+2y=-21.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.已知等腰三角形的周长为14,腰长和底边长之差为1,则腰长为5或$\frac{13}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如果关于x的不等式组$\left\{\begin{array}{l}{2x-m+3>0}\\{x-3m-1<0}\end{array}\right.$,无解,那么m的取值范围是m≤-1..

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.数轴上表示整数的点称为整点,若在数轴上任意画一条长为3个单位长度的线段AB,则线段AB盖住的整数点个数共有(  )个.
A.1个或2个B.2个或3个C.4个或3个D.5个或4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.若|x|+3=|x-3|,则x的取值范围是x≤0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.不等式x+2<1的解集是(  )
A.x<3B.x<-1C.x<1D.无解

查看答案和解析>>

同步练习册答案