已知:关于x的二次函数y=-x2+ax(a>0),点A(n,y1)、B(n+1,y2)、C(n+2,y3)都在这个二次函数的图象上,其中n为正整数.
(1)y1=y2,请说明a必为奇数;
(2)设a=11,求使y1≤y2≤y3成立的所有n的值;
(3)对于给定的正实数a,是否存在n,使△ABC是以AC为底边的等腰三角形?如果存在,求n的值(用含a的代数式表示);如果不存在,请说明理由.
解:(1)∵点A(n,y
1)、B(n+1,y
2)、C(n+2,y
3)都在二次函数y=-x
2+ax(a>0)的图象上,
∴y
1=-n
2+an,y
2=-(n+1)
2+a(n+1)
∵y
1=y
2,
∴-n
2+an=-(n+1)
2+a(n+1)
整理得:a=2n+1
∴a必为奇数;
(2)当a=11时,∵y
1≤y
2≤y
3∴-n
2+11n≤-(n+1)
2+11(n+1)≤-(n+2)
2+11(n+2)
化简得:0≤10-2n≤18-4n,
解得:n≤4,
∵n为正整数,
∴n=1、2、3、4.
(3)假设存在,则BA=BC,如右图所示.
过点B作BN⊥x轴于点N,过点A作AD⊥BN于点D,CE⊥BN于点E.
∵x
A=n,x
B=n+1,x
C=n+2,
∴AD=CE=1.
在Rt△ABD与Rt△CBE中,
,
∴Rt△ABD≌Rt△CBE(HL).
∴∠ABD=∠CBE,即BN为顶角的平分线.
由等腰三角形性质可知,点A、C关于BN对称,
∴BN为抛物线的对称轴,点B为抛物线的顶点,
∴n+1=
,
∴n=
-1.
∴a为大于2的偶数,存在n,使△ABC是以AC为底边的等腰三角形,n=
-1.
分析:(1)将点A和点B的坐标代入二次函数的解析式,利用y
1=y
2得到用n表示a的式子,即可得到答案;
(2)将a=11代入解析式后,由题意列出不等式组,求得此不等式组的正整数解;
(3)本问为存在型问题.如解答图所示,可以由三角形全等及等腰三角形的性质,判定点B为抛物线的顶点,点A、C关于对称轴对称.于是得到n+1=
,从而可以求出n=
-1.
点评:本题考查了二次函数的综合知识,涉及二次函数的图象与性质、等腰三角形、全等三角形、因式分解、解不等式等知识点,有一定的难度,是一道好题.