精英家教网 > 初中数学 > 题目详情

【题目】如图,学校大门出口处有一自动感应栏杆,点A是栏杆转动的支点,当车辆经过时,栏杆AE会自动升起,某天早上,栏杆发生故障,在某个位置突然卡住,这时测得栏杆升起的角度∠BAE=127°,已知AB⊥BC,支架AB高1.2米,大门BC打开的宽度为2米,以下哪辆车可以通过?(  )
(栏杆宽度,汽车反光镜忽略不计)
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.车辆尺寸:长×宽×高)

A.宝马Z4(4200mm×1800mm×1360mm)
B.奇瑞QQ(4000mm×1600mm×1520mm)
C.大众朗逸(4600mm×1700mm×1400mm)
D.奥迪A4(4700mm×1800mm×1400mm)

【答案】C
【解析】解:如图,过点A作BC的平行线AG,过点N作NQ⊥BC于Q,交AG于点R,
则∠BAG=90°,
∵∠BAE=127°,∠BAG=90°,
∴∠EAH=∠EAB﹣∠BAG=37°.
在△NAR中,∠ARN=90°,∠EAG=37°,
当车宽为1.8m,则GR=1.8m,故AR=2﹣1.8=0.2(m),
∴NR=ARtan37°=0.2×0.75=0.15(m),
∴NQ=1.2+0.15=1.35<1.36,
∴宝马Z4(4200mm×1800mm×1360mm)无法通过,
∴奥迪A4(4700mm×1800mm×1400mm)无法通过,
故此选项A,D不合题意;
当车宽为1.6m,则GR=1.6m,故AR=2﹣1.6=0.4(m),
∴NR=ARtan37°=0.4×0.75=0.3(m),
∴NQ=1.2+0.3=1.5<1.52,
∴奇瑞QQ(4000mm×1600mm×1520mm)无法通过,故此选项不合题意;
当车宽为1.7m,则GR=1.7m,故AR=2﹣1.7=0.3(m),
∴NR=ARtan37°=0.3×0.75=0.225(m),
∴NQ=1.2+0.225=1.425>1.4,
∴大众朗逸(4600mm×1700mm×1400mm)可以通过,故此选项符合题意;
故选:C.

【考点精析】解答此题的关键在于理解解直角三角形的相关知识,掌握解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A的坐标是(0,2),点Cx轴上的一个动点.当点Cx轴上移动时,始终保持△ACP是等边三角形(点A、C、P按逆时针方向排列);当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).

初步探究

(1)写出点B的坐标   

(2)Cx轴上移动过程中,当等边三角形ACP的顶点P在第三象限时,连接BP,求证:△AOC≌△ABP.

深入探究

(3)当点Cx轴上移动时,点P也随之运动.探究点P在怎样的图形上运动,请直接写出结论;并求出这个图形所对应的函数表达式.

拓展应用

(4)Cx轴上移动过程中,当△POB为等腰三角形时,直接写出此时点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AB=5,AC=3,D点从BC的中点到C点运动,点E在AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径R的取值范围为(  )

A.≤R≤
B.≤R≤
C.≤R≤2
D.1≤R≤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADABC的中线,BEABD的中线.

1ABE=15°BAD=40°,求∠BED的度数;

2作图:在BED中作出BD边上的高EFBE边上的高DG

3)若ABC的面积为40BD=5,则BDE BD边上的高EF为多少?若BE=6,求BEDBE边上的高DG为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABBCDCBC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AD∥BC,AB⊥AD,点E点F分别在射线AD,射线BC上,若点E与点B关于AC对称,点E点F关于BD对称,AC与BD相交于点G,则(  )

A.∠AEB+22°=∠DEF
B.1+tan∠ADB=
C.2BC=5CF
D.4cos∠AGB=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】任何一个正整数n都可以进行这样的分解:ns×t(st是正整数,且st),如果p×qn的所有这种分解中两因数之差的绝对值最小,我们就称p×qn的最佳分解,并规定:、例如18可以分解成1×182×93×6这三种,这时就有.给出下列关于F(n)的说法:(1)(2)(3)F(27)3(4)n是一个整数的平方,则F(n)1.其中正确说法的有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是△ABC的中线,tanB= , cosC= , AC= . 求:
(1)BC的长;
(2)sin∠ADC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题背景:已知,如图1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AB=a,△ABC的面积为S,则有BC=a,S=a2

(2)迁移应用:如图2,△ABC△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.

求证:△ADB≌△AEC;

∠ADB的度数.

AD=2,BD=4,求△ABC的面积.

(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CDF,连接AD,BE.

∠EAF的度数;

CD=5,BD=2,求BC的长.

查看答案和解析>>

同步练习册答案