分析 (1)根据相似三角形的判定和性质定理证明;
(2)证明BA⊥AC,证明结论;
(3)根据相似三角形的性质得到CD=$\sqrt{2}$CE,证明△CDE∽△CAD,根据相似三角形的性质解答即可.
解答 (1)证明:∵∠CDE=∠CAD,∠C=∠C,
∴△CDE∽△CAD,
∴$\frac{CD}{CA}=\frac{CE}{CD}$,
∴CD2=CA•CE;
(2)AC与⊙O相切,
证明:∵AC是⊙O的直径,
∴∠ADB=90°,
∴∠BAD+∠B=90°,
∵OB=OD,
∴∠B=∠ODB,
∵∠ODB=∠CDE,∠CDE=∠CAD,
∴∠B=∠CAD,
∴∠BAC=∠BAD+∠CAD=∠B+∠BAD=90°,
∴BA⊥AC,
∴AC与⊙O相切;
(3)解:∵AE=EC,
∴CD2=CA•CE=(AE+CE)•CE=2CE2,
∴CD=$\sqrt{2}$CE,
∵△CDE∽△CAD,
∴$\frac{DE}{AD}=\frac{CE}{CD}=\frac{CE}{{\sqrt{2}CE}}=\frac{{\sqrt{2}}}{2}$,
∵∠ADE=180°-∠ADB=90°,∠B=∠CAD,
∴tan B=tan∠CAD=$\frac{DE}{AD}=\frac{{\sqrt{2}}}{2}$.
点评 本题考查的是圆的知识的综合应用,掌握圆的切线的判定定理、相似三角形的判定和性质定理、锐角三角函数的概念是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 3a2+4a2=7a4 | B. | 4m2n+2mn2=6m2n | C. | 2x2-$\frac{1}{2}$x2=$\frac{3}{2}$x2 | D. | 2a-a=2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com