精英家教网 > 初中数学 > 题目详情
如图,已知点A(-12,0),B(3,0),点C在y轴的正半轴上,且∠ACB=90°.
(1)求点C的坐标;
(2)求Rt△ACB的角平分线CD所在直线l的解析式;
(3)在l上求出满足S△PBC=
1
2
S△ABC的点P的坐标;
(4)已知点M在l上,在平面内是否存在点N,使以O、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在.请说明理由.
(1)由△AOC△COB,可得OC2=OA×OB=36,
∴OC=6
又∵点C在y轴的正半轴上,
∴点C的坐标是(0,6);

(2)过点D作DE⊥BC于点E.设DB的长为m.
在Rt△DEB中,DE=DB•sinB=m•
AC
AB
=
2
5
5
m,BE=DB•cosB=
5
5
m
在Rt△DEC中,∠DCE=45°,于是CE=DE=
2
5
5
m
由CE+BE=BC,即
2
5
5
m+
5
5
m=3
5
,解得m=5
又由OA>OB,知点D在线段OA上,OB=3,所以OD=2,故点D(-2,0);
设直线l的解析式为:y=kx+b,把C(0,6)和D(-2,0)代入y=kx+b中,
b=6
-2k+b=0

解得
k=3
b=6

故直线l的解析式为:y=3x+6;

(3)①取AB的中点F(-4.5,0),过点F作BC的平行线交直线l于点P1,连接CF.
易知S△P1BC=S△FBC=S△ACB,∴点P1为符合题意的点.
直线P1F可由直线BC向左平移BF个单位得到(即向左平移7.5个单位)
而直线BC的解析式为y=-2x+6,

即直线P1F的解的式为y=-2(x+7.5)+6即
y=-2x-9,由
y=-2x-9
y=3x+6
得点P1(-3,-3)
②在直线l上取点P2使CP2=CP1,此时有S△P2BC=S△P1BC=
1
2
S△ACB,∴点符P2合题意.
由CP2=CP1,可得点P2的坐标为(3,15),∴点P(-3,-3)或P(3,15)可使S△PBC=
1
2
S△ABC

(4)当OC是菱形的对角线时,OC的中点的坐标是(0,3),则把y=3代入l的解析式得:3x+6=3,
解得:x=-1.
则M的坐标是(-1,3),N的坐标是(1,3);
当OC是菱形的一条边时,点N的坐标是(-
18
5
6
5
),(
3
10
5
9
10
5
),(-
3
10
5
,-
9
10
5
).
故N的坐标是(1,3)或(-
18
5
6
5
)或(
3
10
5
9
10
5
)或(-
3
10
5
,-
9
10
5
).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.
(1)两车在途中相遇的次数为______次;(直接填入答案)
(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数过点(-2,3)和(2,-1).
(1)求这个函数的解析式;
(2)在直角坐标系内画出这个函数的图象;
(3)当0<x<4时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标系中,已知矩形OABC点B的坐标是(3,2),对角线AC所在直线为l,求直线l对应的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图已知直线L:y=
3
4
x+3,它与x轴、y轴的交点分别为A、B两点.
(1)求点A、点B的坐标.
(2)设F为x轴上一动点,用尺规作图作出⊙P,使⊙P经过点B且与x轴相切于点F(不写作法,保留作图痕迹).
(3)设(2)中所作的⊙P的圆心坐标为P(x,y),求y关于x的函数关系式.
(4)是否存在这样的⊙P,既与x轴相切又与直线L相切于点B?若存在,求出圆心P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知等腰三角形周长为20,则底边长y关于腰长x的函数图象是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小军一家人假日开轿车从A地驶往B地去旅游,前一段路为普通公路,后一段路为高速公路,且高速公路路程是普通公路路程的2倍.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.(两段路程行驶过程均视为匀速行驶)
(1)求汽车行驶的两段“路程”或“时间”;
(2)请你根据以上信息,写出轿车所行路程s(km)与时间t(h)之间的函数关系式,并在平面直角坐标系中画出函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

齐齐哈尔至哈尔滨的高速公路长约300千米,甲、乙两车同时分别从距齐齐哈尔240千米,60千米的入口进入高速公路并正常行驶.甲车驶往齐齐哈尔、乙车驶往哈尔滨.甲车在行驶过程中速度始终不变,甲车离齐齐哈尔的距离y(千米)与行驶时间x(时)之间的函数图象如图所示.
(1)求出甲车离齐齐哈尔的距离y(千米)与行驶时间x(时)之间的函数表达式;
(2)乙车若以60千米/时的速度匀速行驶,1小时后两车相距多少千米?
(3)乙车按(2)中状态行驶与甲车相遇后,速度改为a千米/时,结果两车同时到达齐齐哈尔、哈尔滨,求乙车变化后的速度a;并在如图所示的直角坐标系中,画出乙离齐齐哈尔的距离y(千米)与行驶时间x(时)之间的函数图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)
路程(千米)运费(元/吨•千米)
甲库乙库甲库乙库
A库20151212
B库2520108
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?

查看答案和解析>>

同步练习册答案