求:(1)圆锥母线与底面半径的比;
(2)锥角的大小;
(3)圆锥的全面积.
思路分析:圆锥的母线在侧面展开图中是扇形的半径,底面周长是展开扇形的弧长.锥角是轴截面的等腰三角形的顶角.知道圆锥母线和底面半径,就可由扇形面积公式求侧面积,底面积加侧面积就得圆锥全面积.解:如图,AO为圆锥的高,经过AO的截面是等腰△ABC,则AB为圆锥母线l,BO为底面半径r.
(1)因圆锥的侧面展开图是半圆,所以2πr=π l,则=2.(2)因=2,则有AB=2OB,∠BAO=30°,所以∠BAC=60°,即锥角为60°. (3)因圆锥的母线 l,高h和底面半径r构成直角三角形,所以l2=h2+r2;又l=2r,h=3 cm,则r=3 cm,l=6 cm.所以S表=S侧+S底=πr l+πr2=3·6π+32π=27π(cm2). |
科目:初中数学 来源: 题型:
3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com