精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,AB=AC,点D为射线CB上一个动点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点EEF∥BC,交直线AC于点F,连接CE.

(1)如图①,若∠BAC=60°,按边分类:△CEF ____________ 三角形;

(2)若∠BAC<60°.

①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;

②当点D在线段CB的延长线上移动时,△CEF是什么三角形?请在图③中画出相应的图形,写出结论并证明.

【答案】(1)等边;(2)①△BEF为等腰三角形,②△EFB为等腰三角形(3)等腰三角形

【解析】

试题(1)、根据题意推出△AED和△ABC为等边三角形,然后通过求证△EAF≌△DAC,结合平行线的性质,即可推出△EFC为等边三角形;(2)、①根据(1)、的推理依据,即可推出△EFC为等腰三角形;②根据题意画出图形,然后根据平行线的性质,通过求证△EAF≌△DAC,推出等量关系,即可推出△CEF为等腰三角形.

试题解析:(1)、等边;

(2)、①△CEF为等腰三角形,

理由如下:∵AB=AC,AD=AE,∠BAC=∠DAE,∴△AED△ABC为等腰三角形,

∴∠ACB=∠ABC,∠EAD=∠CAE,∴△EAC≌△BAD,∴∠ABC=∠ACE,∵EF∥BC,

∴∠EFC=∠ACB,∵△EFB中,∠EFC=∠ACE, ∴△EFB为等腰三角形,

②AB=AC,点D为射线BC上一个动点(不与B、C重合),以AD为一边向AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点EBC的平行线,交直线AB于点F,连接BE.

∵△BEF为等腰三角形,∵AB=AC,AD=AE,∠BAC=∠DAE,

∴△AED△ABC为等腰三角形, ∴∠ACB=∠ABC,∠EAB=∠DAC,

∴△EAF≌△DAC, ∴∠EBA=∠ACD, ∴∠EBF=∠ACB,

∵EF∥BC, ∴∠AFE=∠ABC, ∵∠ABC=∠ACB, ∴∠AFE=∠ACB,

△EFB中,∠EBF=∠AFE, ∴△EFB为等腰三角形.

(3)、等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了 天的调查,将所得数据绘制成如下统计图(图2不完整):

请根据所给信息,解答下列问题:
(1)第 天,这一路口的行人交通违章次数是多少次?这 天中,行人交通违章 次的有多少天?
(2)请把图2中的频数直方图补充完整;
(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了 次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 与直线 相交于点P(1,b)

(1)求b,m的值
(2)垂直于x轴的直线 与直线 分别相交于C,D,若线段CD长为2,求a的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】判断下列各式从等号左边到右边的变形哪些是整式乘法哪些是因式分解.

(1)a2-9b2=(a+3b)(a-3b);

(2)3y(x+2y)=3xy+6y2

(3)(3a-1)2=9a2-6a+1;

(4)4y2+12y+9=(2y+3)2

(5)x2+x=x2(1+);

(6)x2-y2+4y-4=(x-y)(x+y)+4(y-1).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A. 平面内,没有公共点的两条线段平行

B. 平面内,没有公共点的两条射线平行

C. 没有公共点的两条直线互相平行

D. 互相平行的两条直线没有公共点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个正整数能表示成两个连续偶数的平方差,那么这个正整数为“神秘数”.

如:

因此,4,12,20这三个数都是神秘数.

(1)282012这两个数是不是神秘数?为什么?

(2)设两个连续偶数为(其中为非负整数),由这两个连续偶数构造的神秘数是4的倍数,请说明理由.

(3)两个连续奇数的平方差(取正数)是不是神秘数?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y= (x>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A,B;过点Q分别作x轴、y轴的垂线,垂足为点C、D.QD交PA于点E,随着m的增大,四边形ACQE的面积(
A.减小
B.增大
C.先减小后增大
D.先增大后减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)
(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h=m
(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据: ≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一次函数的图象经过点

(1)求m的值;

(2)画出此函数的图象

(3)平移此函数的图象,使得它与两坐标轴所围成的图形的面积为4,请直接写出此时图象所对应的函数关系式.

查看答案和解析>>

同步练习册答案