精英家教网 > 初中数学 > 题目详情
8.在-2、1、-$\sqrt{5}$、0这四个数中,最小的实数是(  )
A.-2B.1C.-$\sqrt{5}$D.0

分析 正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.

解答 解:根据实数比较大小的方法,可得
1>0>-2>-$\sqrt{5}$,
∴在-2、1、-$\sqrt{5}$、0这四个数中,最小的实数是-$\sqrt{5}$.
故选:C.

点评 此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

18.某居民小区开展节约用水活动,3月份各户用水量比2月份有所下降,不同节水量的户数统计如下表所示:
节水量(立方米)1 23
 户数2012060
那么3月份平均每户节水量是(  )
A.1.9立方米B.2.2立方米C.33.33立方米D.66.67立方米

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,菱形ABCD的边长为5,对角线AC=2$\sqrt{5}$,点E在边AB上,BE=2,点P是AC上的一个动点,则PB+PE的最小值为2$\sqrt{13}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,等腰Rt△ABC中,∠B=90°,AB=1,将Rt△ABC绕点C按顺时针方向旋转,得到Rt△A′B′C,且B、C、B′三点共线,则边AB扫过的面积(图中阴影部分)是$\frac{3}{8}π$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.计算:(-$\frac{1}{3}$)-2+|$\sqrt{3}$-2|-2tan60°+$\sqrt{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:(-2)0-(-$\frac{1}{3}$)2×3+(-1)3÷$\frac{3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.小明家到公园的路程为2000米,小明爸爸和小明先后从家出发步行去公园.爸爸先出发一直匀速前行,小明在爸爸走出200米后出发,途中他在休闲广场观棋停留一段时间.小明所走路程y(米)与步行时间x(分)的函数图象如图所所示.
(1)求直线BC所对应的函数表达式.
(2)在小明出发后的第20分钟,爸爸与小明第二次相遇,请在图中画出爸爸所走的路程y(米)与小明的步行时间x(分)的函数图象.
(3)在速度都不变的情况下,小明希望比爸爸早8分钟到达公园,请直接写出小明怎样调整在休闲广场的观棋时间.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知:如图,抛物线y=ax2+bx+c与x轴交于两个不同的点A(-4,0),B(1,0),与y轴正半轴交于点C,tan∠CAB=$\frac{1}{2}$.
(1)求抛物线的解析式并验证点Q(-1,3)是否在抛物线上;
(2)点M是线段AC上一动点(不与A,C重合),过点M作x轴的垂线,垂足为H,交抛物线于点N,试判断当MN为最大值时,以MN为直径的圆与y轴的位置关系并说明理由;
(3)已知过点B的直线y=x-1交抛物线于另一点E,问:在x轴上是否存在点P,使以点P,A,Q为顶点的三角形与△AEB相似?若存在,请求出所有符合要求的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.某市中学组织学生到距离学校6km的神舟科技馆去参观,学生李伟因事故耽误没能乘上学校的专车,于是准备在学校门口改乘出租车去神舟科技馆,出租车的收费标准如下:
 里程 收费
 2km以内(含2km) 10.0
 2km以上,每增加1km 1.40
(1)写出出租车行驶的里程数x(x≥2km)与费用y(元)之间的函数关系式;
(2)李伟同学身上仅有16元钱,乘出租车到科技馆的车费够不够?请说明理由.

查看答案和解析>>

同步练习册答案