精英家教网 > 初中数学 > 题目详情
(2004•内江)如图,∠AOB=30°,OP平分∠AOB,PC∥OB,PD⊥OB,如果PC=6,那么PD等于( )

A.4
B.3
C.2
D.1
【答案】分析:根据角平分线的性质,角平分线上的点到两角的距离相等,因而过P作PE⊥OA于点E,则PD=PE,因为PC∥OB,根据三角形的外角的性质得到:∠ECP=∠COP+∠OPC=30°,在直角△ECP中球得PD的长.
解答:解:过P作PE⊥OA于点E,则PD=PE,
∵PC∥OB∴∠OPC=∠POD,
又∵OP平分∠AOB,∠AOB=30°,
∴∠OPC=∠COP=15°,
∠ECP=∠COP+∠OPC=30°,
在直角△ECP中,
PE=PC=3,
则PD=PE=3.
故选B.
点评:本题主要考查了角平分线的性质,角平分线上的点到角的两边距离相等.正确作出辅助线是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《二次函数》(04)(解析版) 题型:解答题

(2004•内江)如图,已知抛物线y=ax2+bx+c与x轴交于A(k,0)(k<0)、B(3,0)两点,与y轴正半轴交于C点,且tan∠CAO=3.
(1)求此抛物线的解析式(系数中可含字母k);
(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;
(3)若题(2)中的平行四边形ADEC为矩形,试求出D的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•内江)如图,等腰直角三角形ABC的斜边BC的长为8,平行于BC边的直线分别交AB,AC于M,N,将△AMN沿直线MN翻折,得到△A′MN,设△A′MN与△ABC的公共部分的面积为y,MN的长为x.
(1)如果A′在△ABC的内部,求出以x为自变量的函数y的解析式,并指出自变量x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的?如果存在,则求出求出对应的x值;如果不存在,则说明理由.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•内江)如图,已知抛物线y=ax2+bx+c与x轴交于A(k,0)(k<0)、B(3,0)两点,与y轴正半轴交于C点,且tan∠CAO=3.
(1)求此抛物线的解析式(系数中可含字母k);
(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;
(3)若题(2)中的平行四边形ADEC为矩形,试求出D的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年四川省内江市中考数学试卷(加试卷)(解析版) 题型:解答题

(2004•内江)如图,已知抛物线y=ax2+bx+c与x轴交于A(k,0)(k<0)、B(3,0)两点,与y轴正半轴交于C点,且tan∠CAO=3.
(1)求此抛物线的解析式(系数中可含字母k);
(2)设点D(0,t)在x轴下方,点E在抛物线上,若四边形ADEC为平行四边形,试求t与k的函数关系式;
(3)若题(2)中的平行四边形ADEC为矩形,试求出D的坐标.

查看答案和解析>>

科目:初中数学 来源:2004年四川省内江市中考数学试卷(加试卷)(解析版) 题型:解答题

(2004•内江)如图,等腰直角三角形ABC的斜边BC的长为8,平行于BC边的直线分别交AB,AC于M,N,将△AMN沿直线MN翻折,得到△A′MN,设△A′MN与△ABC的公共部分的面积为y,MN的长为x.
(1)如果A′在△ABC的内部,求出以x为自变量的函数y的解析式,并指出自变量x的取值范围;
(2)是否存在直线MN,使y的值为△ABC面积的?如果存在,则求出求出对应的x值;如果不存在,则说明理由.

查看答案和解析>>

同步练习册答案