精英家教网 > 初中数学 > 题目详情
如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是( )

A.②④
B.①④
C.②③
D.①③
【答案】分析:由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上得到c>0,由对称轴为x==-1可以判定②错误;
由图象与x轴有交点,对称轴为x==-1,与y轴的交点在y轴的正半轴上,可以推出b2-4ac>0,即b2>4ac,①正确;由x=-1时y有最大值,由图象可知y≠0,③错误.然后即可作出选择.
解答:解:①∵图象与x轴有交点,对称轴为x==-1,与y轴的交点在y轴的正半轴上,
又∵二次函数的图象是抛物线,
∴与x轴有两个交点,
∴b2-4ac>0,
即b2>4ac,正确;
②∵抛物线的开口向下,
∴a<0,
∵与y轴的交点在y轴的正半轴上,
∴c>0,
∵对称轴为x==-1,
∴2a=b,
∴2a+b=4a,a≠0,
错误;
③∵x=-1时y有最大值,
由图象可知y≠0,错误;
④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,两边相加整理得
5a-b=-c<0,即5a<b.
故选B.
点评:解答本题关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1,x的取值范围是
-2<x<1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图是二次函数y=2x2-4x-6的图象,那么方程2x2-4x-6=0的两根之和
 
0.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图形判断①c>0;②a+b+c<0;③2a-b<0;④b2+8a>4ac中正确的是(填写序号)
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是二次函数y1=ax2+bx+c和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是
-1≤x≤2
-1≤x≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图是二次函数y=ax2+bx+c的部分图象,由图象可知方程ax2+bx+c=0的解是
x1=-1
x1=-1
x2=5
x2=5

查看答案和解析>>

同步练习册答案