精英家教网 > 初中数学 > 题目详情
(2013•自贡)如图,在函数y=
8
x
(x>0)
的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则S1=
4
4
,Sn=
8
n(n+1)
8
n(n+1)
.(用含n的代数式表示)
分析:求出P1、P2、P3、P4…的纵坐标,从而可计算出S1、S2、S3、S4…的高,进而求出S1、S2、S3、S4…,从而得出Sn的值.
解答:解:当x=2时,P1的纵坐标为4,
当x=4时,P2的纵坐标为2,
当x=6时,P3的纵坐标为
4
3

当x=8时,P4的纵坐标为1,
当x=10时,P5的纵坐标为:
4
5


则S1=2×(4-2)=4=2[
8
2×1
-
8
2×(1+1)
];
S2=2×(2-
4
3
)=2×
2
3
=2[
8
2×2
-
8
2×(2+1)
];
S3=2×(
4
3
-1)=2×
1
3
=2[
8
2×3
-
8
2×(3+1)
];

Sn=2[
8
2n
-
8
2(n+1)
]=
8
n(n+1)

故答案为:4,
8
n(n+1)
点评:此题考查了反比例函数图象上点的坐标特征,根据坐标求出个阴影的面积表达式是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•自贡)如图,在平面直角坐标系中,⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,0),C(0,6),则⊙A的半径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•自贡)如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于E,交DC的延长线于F,BG⊥AE于G,BG=4
2
,则△EFC的周长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•自贡)如图,点O是正六边形的对称中心,如果用一副三角板的角,借助点O(使该角的顶点落在点O处),把这个正六边形的面积n等分,那么n的所有可能取值的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•自贡)如图,已知抛物线y=ax2+bx-2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=
12

(1)求抛物线的解析式;
(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;
(3)在(2)中四边形BMCA面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案