精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,将△ABC沿AE折叠 使点C恰好落在AB边上的点F.BE的长.

【答案】BE=5

【解析】

根据折叠性质可知CE=EF,EFAB,利用勾股定理可求出AB的长,进而可知BF的长,在RtBEF中,BE=BC-CE=BC-EF,BE=x,EF=8-x,利用勾股定理列方程即可求出BE的长.

将△ABC沿AE折叠 使点C恰好落在AB边上的点F,

∴AC=AF=6,EFAB,CE=EF,

RtABC中,∠C=90°,BC=8,AC=6,

∴AB==10,

∴BF=10-6=4,

BE=x,EF=8-x,

∴x2=(x-8)2+42

解方程得:x=5.BE=5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC与△DCE都是等边三角形,BCE三点在同一条直线上,若AB=6,BAD=150°,则DE的长为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AB=AD,AC=5,DAB=DCB=90°,则四边形ABCD的面积为(  )

A. 15 B. 12.5 C. 14.5 D. 17

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1在平面直角坐标系中.等腰Rt△OAB的斜边OA在x轴上.P为线段OB上﹣动点(不与O,B重合).过P点向x轴作垂线.垂足为C.以PC为边在PC的右侧作正方形PCDM.OP= t、OA=3.设过O,M两点的抛物线为y=ax2+bx.其顶点N(m,n)

(1)写出t的取值范围 , 写出M的坐标:();
(2)用含a,t的代数式表示b;
(3)当抛物线开向下,且点M恰好运动到AB边上时(如图2)
①求t的值;
②若N在△OAB的内部及边上,试求a及m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数的解析式为y=ax2+bx+c(a、b、c为常数,a≠0),且a2+ab+ac<0,下列说法:
①b2﹣4ac<0;
②ab+ac<0;
③方程ax2+bx+c=0有两个不同根x1、x2 , 且(x1﹣1)(1﹣x2)>0;
④二次函数的图象与坐标轴有三个不同交点,
其中正确的个数是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC与点O在10×10的网格中的位置如图所示

(1)画出△ABC绕点O逆时针旋转90°后的图形;
(2)画出△ABC绕点O逆时针旋转180°后的图形;
(3)若⊙M能盖住△ABC,则⊙M的半径最小值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2﹣4x+1﹣p2=0.
(1)若p=2,求原方程的根;
(2)求证:无论p为何值,方程总有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连接AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F.是否存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案