精英家教网 > 初中数学 > 题目详情
精英家教网如图所示,在梯形ABCD中,AD∥BC,AB=DC,BD⊥DC,且BD平分∠ABC,若梯形的周长为20cm,梯形的中位线的长为
 
cm.
分析:由AB=CD,得出梯形是等腰梯形,有∠ABC=∠C,由BD平分∠ABC,得∠ABD=∠ADB=∠DBC=
1
2
∠C.在Rt△BDC中有,∠DBC=
1
2
∠C,∴∠DBC=30°.∴DC=
1
2
BC.
解答:解:在梯形ABCD中,AB=CD,
∴∠ABC=∠C.
∵AD∥BC,∴∠ADB=∠DBC.
∵BD平分∠ABC,∴∠ABD=∠DBC.
∴∠ABD=∠ADB=∠DBC=
1
2
∠C.
∴AB=AD=DC.
又∵BD⊥DC,2∠DBC=∠C,
∴∠DBC+∠C=90°,
∴∠DBC+2∠DBC=90°,
∴∠DBC=30°.
∴DC=
1
2
BC.
设AB=x,则AB=AD=DC=x,BC=2x.
∴x+x+x+2x=20,解得x=4.
∴AD=4cm,BC=8cm.
∴中位线长=
AD+BC
2
=
4+8
2
=6(cm).
点评:本题利用了1、两腰相等的梯形是等腰梯形的判定,2、等腰梯形的性质,3、角的平分线的性质,4,直角三角形的性质,5、梯形的中位线的长等于两底和的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
(2)若E、F分别是AB、DC的中点,连接EF,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.则腰长是
 
.若P是梯形的对称轴L上的点,那么使△PDB为等腰三角形的点有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在梯形ABCD中,AB∥DC,EF是梯形的中位线,AC交EF于G,BD交EF于H,以下说法错误的是(  )

查看答案和解析>>

同步练习册答案