精英家教网 > 初中数学 > 题目详情
(2013•营口)如图,某人在山坡坡脚C处测得一座建筑物顶点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=90米,且B、C、D在同一条直线上,山坡坡度为
1
2
(即tan∠PCD=
1
2
).
(1)求该建筑物的高度(即AB的长).
(2)求此人所在位置点P的铅直高度.(测倾器的高度忽略不计,结果保留根号形式)
分析:(1)过点P作PE⊥BD于E,PF⊥AB于F,在Rt△ABC中,求出AB的长度即可;
(2)设PE=x米,则BF=PE=x米,根据山坡坡度为
1
2
,用x表示CE的长度,然后根据AF=PF列出等量关系式,求出x的值即可.
解答:解:(1)过点P作PE⊥BD于E,PF⊥AB于F,
又∵AB⊥BC于B,
∴四边形BEPF是矩形,
∴PE=BF,PF=BE
∵在Rt△ABC中,BC=90米,∠ACB=60°,
∴AB=BC•tan60°=90
3
(米),
故建筑物的高度为90
3
米;

(2)设PE=x米,则BF=PE=x米,
∵在Rt△PCE中,tan∠PCD=
PE
CE
=
1
2

∴CE=2x,
∵在Rt△PAF中,∠APF=45°,
∴AF=AB-BF=90
3
-x,
PF=BE=BC+CE=90+2x,
又∵AF=PF,
∴90
3
-x=90+2x,
解得:x=30
3
-30,
答:人所在的位置点P的铅直高度为(30
3
-30
)米.
点评:本题考查了解直角三角形的应用,要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•营口)如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.
(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•营口)如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=
115°
115°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•营口)如图,点C是以AB为直径的⊙O上的一点,AD与过点C的切线互相垂直,垂足为点D.
(1)求证:AC平分∠BAD;
(2)若CD=1,AC=
10
,求⊙O的半径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•营口)如图1,△ABC为等腰直角三角形,∠ACB=90°,F是AC边上的一个动点(点F与A、C不重合),以CF为一边在等腰直角三角形外作正方形CDEF,连接BF、AD.
(1)①猜想图1中线段BF、AD的数量关系及所在直线的位置关系,直接写出结论;
②将图1中的正方形CDEF,绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2、图3的情形.图2中BF交AC于点H,交AD于点O,请你判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中的等腰直角三角形ABC改为直角三角形ABC,∠ACB=90°,正方形CDEF改为矩形CDEF,如图4,且AC=4,BC=3,CD=
43
,CF=1,BF交AC于点H,交AD于点O,连接BD、AF,求BD2+AF2的值.

查看答案和解析>>

同步练习册答案