精英家教网 > 初中数学 > 题目详情
在△ABC中,∠C=90,AD是∠BAC的平分线,BC为切线,DB=5,CD=3,求:AC的长.
考点:切线的性质
专题:
分析:过D作DE⊥AB于E,可证明△AED≌△ACD,可求得DE,在Rt△BED中,利用勾股定理可求得BE=4,在Rt△ABC中可求出AC.
解答:解:过D作DE⊥AB于E,
∴∠AED=∠C=90°,
在△AED和△ACD中
∠AED=∠ACD
∠EAD=∠CAD
AD=AD

∴△AED≌△ACD(AAS),
∴AE=AC,DE=DC=3,
在Rt△BDE中,由勾股定理可求得BE=4,
设AC=x(x>0),则AE=x,
在Rt△ABC中,∠C=90°,BC=BD+CD=8,AB=x+4,
由勾股定理可得x2+82=(x+4)2
解得x=6,即AC=6.
点评:本题主要考查全等三角形的判定和性质及勾股定理,构造三角形全等得到DC=3,求得BE,利用勾股定理列出方程是解题的关键.注意方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备多少钱买门票.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,在矩形ABCD中,对角线AC与BD相交于点O,点M,P,N,Q分别在AO,BO,CO,DC上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

小花同学打开作业本,正准备做作业,突然发现一到应用题目被爱画画的弟弟用画笔涂掉了一部分,只看到如下的文字:甲、乙两地相距90km,(黑线表示被弟弟涂掉的部分),请你将这道作业题补充完整,并列方程解答.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:|cos40°-1|+
1-cos250°

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,从∠1,∠2,∠3,∠4,∠A,∠C,∠ABC,∠ADC中,找出所有的内错角和同旁内角.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ABC的平分线与△ABC的外角∠ACD的平分线交于点R,试问∠R与∠A有什么关系?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知房屋的高度为h m,现老板娘在客厅和卧室的墙壁上贴壁纸,那么至少需要多少平方米的壁纸?如果某种壁纸的价格是b元/m2,那么购买所需壁纸至少需要多少元?(计算时不扣除门,窗所占的面积)

查看答案和解析>>

同步练习册答案