A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据等腰直角三角形的性质可得AB=AC,AD=AE,然后求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△ACE全等,根据全等三角形对应边相等可得CE=BD,判断①正确;根据全等三角形对应角相等可得∠ABD=∠ACE,从而求出∠BCG+∠CBG=∠ACB+∠ABC=90°,再求出∠BGC=90°,从而得到BD⊥CE,根据四边形的面积判断出④正确;根据勾股定理表示出BC2+DE2,BE2+CD2,得到⑤正确;再求出AE∥CD时,∠ADC=90°,判断出②错误;∠AEC与∠BAE不一定相等判断出③错误.
解答 解:∵,△ABC和△ADE都是等腰直角三角形,
∴AB=AC,AD=AE,
∵∠BAD=∠BAC+∠CAD=90°+∠CAD,
∠CAE=∠DAE+∠CAD=90°+∠CAD,
∴∠BAD=∠CAE,
在△ABD和△ACE中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAD=∠CAE}\\{AD=AE}\end{array}\right.$,
∴△ABD≌△ACE(SAS),
∴CE=BD,故①正确;
∠ABD=∠ACE,
∴∠BCG+∠CBG=∠ACB+∠ABC=90°,
在△BCG中,∠BGC=180°-(∠BCG+∠CBG)=180°-90°=90°,
∴BD⊥CE,
∴S四边形BCDE=$\frac{1}{2}$BD•CE,故④正确;
由勾股定理,在Rt△BCG中,BC2=BG2+CG2,
在Rt△DEG中,DE2=DG2+EG2,
∴BC2+DE2=BG2+CG2+DG2+EG2,
在Rt△BGE中,BE2=BG2+EG2,
在Rt△CDG中,CD2=CG2+DG2,
∴BE2+CD2=BG2+CG2+DG2+EG2,
∴BC2+DE2=BE2+CD2,故⑤正确;
只有AE∥CD时,∠AEC=∠DCE,
∠ADC=∠ADB+∠BDC=90°,
无法说明AE∥CD,故②错误;
∵△ABD≌△ACE,
∴∠ADB=∠AEC,
∵∠AEC与∠AEB相等无法证明,
∴∠ADB=∠AEB不一定成立,故③错误;
综上所述,正确的结论有①④⑤共3个.
故选C
点评 此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | BC=2DE | B. | △ADE∽△ABC | C. | $\frac{AD}{AE}$=$\frac{AB}{AC}$ | D. | S△ABC=2S△ADE |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | -12-8-3+4 | B. | -12-8+3+4 | C. | -12+8+3+4 | D. | 12-8-3-4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{a}+\frac{1}{a}=\frac{1}{2a}$ | B. | $\frac{1}{a-b}+\frac{1}{b-a}=0$ | ||
C. | $\frac{m-n}{a}-\frac{m+n}{a}=0$ | D. | $\frac{1}{{{{(a-b)}^2}}}+\frac{1}{{{{(b-a)}^2}}}=\frac{1}{{{{(a-b)}^2}}}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 12-8-7+15 | B. | -12+18+7-15 | C. | 12+18+7-15 | D. | 12+18-7-15 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com