精英家教网 > 初中数学 > 题目详情
(2011•海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.
(1)求证:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).
解:(1)∵四边形ABCD是菱形,
∴AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,
∵∠A=60°,
∴△ABD是等边三角形,∠ABC=120°,
∴AD=BD,∠CBD=∠A=60°,
∵AP=BQ,
∴△BDQ≌△ADP(SAS);
(2)过点Q作QE⊥AB,交AB的延长线于E,

∵△BDQ≌△ADP,
∴BQ=AP=2,
∵AD∥BC,
∴∠QBE=60°,
∴QE=QB•sin60°=2×=,BE=QB•cos60°=2×=1,
∵AB=AD=3,
∴PB=AB﹣AP=3﹣2=1,
∴PE=PB+BE=2,
∴在Rt△PQE中,PQ==
∴cos∠BPQ===.解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2011•海南)如图,已知抛物线y=﹣x2+bx+9﹣b2(b为常数)经过坐标原点O,且与x轴交于另一点E.其顶点M在第一象限.
(1)求该抛物线所对应的函数关系式;
(2)设点A是该抛物线上位于x轴上方,且在其对称轴左侧的一个动点;过点A作x轴的平行线交该抛物线于另一点D,再作AB⊥x轴于点B.DE⊥x轴于点C.
①当线段AB、BC的长都是整数个单位长度时,求矩形ABCD的周长;
②求矩形ABCD的周长的最大值,并写出此时点A的坐标;
③当矩形ABCD的周长取得最大值时,它的面积是否也同时取得最大值?请判断井说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•海南)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•海南)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论 ①MN∥BC,②MN=AM,下列说法正确的是(  )

A、①②都对          B、①②都错
C、①对②错          D、①错②对

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•海南)如图,在△ABC中.∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有(  )
A.1对B.2对
C.3对D.4对

查看答案和解析>>

同步练习册答案