我们知道,各类方程的解法虽然不尽相同,但是它们的基本思想都是“转化”,即把未知转化为已知.用“转化”的数学思想,我们还可以解一些新方程.
认识新方程:
像=x这样,根号下含有未知数的方程叫做无理方程,可以通过方程两边平方把它转化为2x+3=x2,解得x1=3,x2=﹣1.但由于两边平方,可能产生增根,所以需要检验,经检验,x2=﹣1是原方程的增根,舍去,所以原方程的解是x=3.
运用以上经验,解下列方程:
(1)=x;
(2)x+2=6.
科目:初中数学 来源:2016-2017学年天津南开区九年级上期中数学试卷(解析版) 题型:选择题
《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”( )
A.3步 B.5步 C.6步 D.8步
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏南师大二附中九年级上10月考数学试卷(解析版) 题型:解答题
如图,AB是⊙O的直径,C是的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD﹦6,AC﹦8,则⊙O的半径为 ,CE的长是 .
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏南师大二附中九年级上10月考数学试卷(解析版) 题型:选择题
若圆的一条弦把圆分成度数之比为1:3的两条弧,则这条弦所对的圆周角等于( )
A.45° B.135° C.90°和270 D.45°和135°
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏南京鼓楼区九年级上期中数学试卷(解析版) 题型:解答题
问题呈现:
如图1,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,BE⊥DC交DC的延长线于点E.求证:BE是⊙O的切线.
问题分析:
连接OB,要证明BE是⊙O的切线,只要证明OB ____ BE,由题意知∠E=90°,故只需证明OB ___ DE.
解法探究:
(1)小明对这个问题进行了如下探索,请补全他的证明思路:
如图2,连接AD,由∠ECB是圆内接四边形ABCD的一个外角,可证∠ECB=∠BAD,因为OB=OC,所以 __ ,因为BD=BA,所以 ______ ,利用同弧所对的圆周角相等和等量代换,得到 ____ ,所以DE∥OB,从而证明出BE是⊙O的切线.
(2)如图3,连接AD,作直径BF交AD于点H,小丽发现BF⊥AD,请说明理由.
(3)利用小丽的发现,请证明BE是⊙O的切线.(要求给出两种不同的证明方法).
查看答案和解析>>
科目:初中数学 来源:2016-2017学年江苏南京鼓楼区九年级上期中数学试卷(解析版) 题型:填空题
一只不透明的袋子中装有2个红球、3个白球,这些球除颜色外都相同,摇匀后从中任意摸出一个球,摸到红球的概率是 .
查看答案和解析>>
科目:初中数学 来源:2016届天津河西区中考模拟数学试卷(五)(解析版) 题型:选择题
如图,在△ABC中,∠BAC=90°,AB=AC,点D为边AC的中点,DE⊥BC于点E,连接BD,则tan∠DBC的值为( )
A. B.﹣1 C.2﹣D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com