分析 由AD=OD,得到∠DAO=∠DOA,根据角平分线的性质得到∠DOA=∠OAC,由平行线的判定得到DE∥AC,得到∠EOC=∠OCA,由等量代换得到角相等,根据等角对等边得到OE=CE,于是得到△BDE的周长=8.
解答 解:∵AD=OD,
∴∠DAO=∠DOA,
∵∠DAO=∠OAC,
∴∠DOA=∠OAC,
∴DE∥AC,
∴∠EOC=∠OCA,
∵∠OCA=∠OCE,
∴∠EOC=∠ECO,
∴OE=CE,
∴BE+DE+BD=BE+OE+OD+BD=BE+EC+BD+DA=AB+BC=5+3=8,
∴△BDE的周长=8.
点评 本题考查了角平分线的性质,平行线的性质,等腰三角形的判定与性质,三角形周长的求法,能通过等量代换得到相等的角是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com