【题目】如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.
(1)求证:AD⊥CF;
(2)连接AF,试判断△ACF的形状,并说明理由.
【答案】(1)见解析;(2)△ACF是等腰三角形,见解析
【解析】
(1)欲求证AD⊥CF,先证明∠CAG+∠ACG=90°,需证明∠CAG=∠BCF,利用三角形全等,易证.
(2)要判断△ACF的形状,看其边有无关系.根据(1)的推导,易证CF=AF,从而判断其形状.
(1)证明:在等腰直角三角形ABC中,
∵∠ACB=90°,
∴∠CBA=∠CAB=45°.
又∵DE⊥AB,
∴∠DEB=90°.
∴∠BDE=45°.
又∵BF∥AC,
∴∠CBF=90°.
∴∠BFD=45°=∠BDE.
∴BF=DB.
又∵D为BC的中点,
∴CD=DB.
即BF=CD.
在△CBF和△ACD中,
,
∴△CBF≌△ACD(SAS).
∴∠BCF=∠CAD.
又∵∠BCF+∠GCA=90°,
∴∠CAD+∠GCA=90°.
即AD⊥CF.
(2)△ACF是等腰三角形,理由为:
连接AF,如图所示,
由(1)知:△CBF≌△ACD,∴CF=AD,
∵△DBF是等腰直角三角形,且BE是∠DBF的平分线,
∴BE垂直平分DF,
∴AF=AD,
∵CF=AD,
∴CF=AF,
∴△ACF是等腰三角形.
科目:初中数学 来源: 题型:
【题目】已知抛物线过点A(2,0),B(﹣1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为( )
A.y=x2﹣x﹣2
B.y=﹣x2+x+2
C.y=x2﹣x﹣2或y=﹣x2+x+2
D.y=﹣x2﹣x﹣2或y=x2+x+2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知两条射线OM∥CN,动线段AB的两个端点A,B分别在射线OM,CN上,且∠C=∠OAB=108°,点E在线段CB上,OB平分∠AOE.
(1)图中有哪些与∠AOC相等的角?并说明理由;
(2)若平移AB,那么∠OBC与∠OEC的度数比是否随着AB位置变化而变化?若变化,找出变化规律;若不变,求出这个比值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,G是线段AB上一点,AC和DG相交于点E.
(1)请先作出∠ABC的平分线BF,交AC于点F;(尺规作图,保留作图痕迹,不写作法与证明)
(2)然后证明当:AD∥BC,AD=BC,∠ABC=2∠ADG时,DE=BF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)如图,已知DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2.试说明CD⊥AB.
解:∵DG⊥BC,AC⊥BC(已知),
∴∠DGB=∠ACB=90°(垂直定义).
∴DG∥AC(__________________).
∴∠2=∠________(两直线平行,内错角相等).
∵∠1=∠2(已知),
∴∠1=∠________(等量代换).
∴EF∥CD(__________________).
∴∠AEF=∠________ (__________________).
∵EF⊥AB(已知).
∴∠AEF=90°(__________________).
∴∠ADC=90°(__________________).
∴CD⊥AB(__________________).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)已知代数式(ax-3)(2x+4)-x2-b化简后,不含x2项和常数项.
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形中,,,.是边的中点,联结、,且.设,.
(1)如果,求的长;
(2)求关于的函数解析式,并写出自变量的取值范围;
(3)联结.如果是以边为腰的等腰三角形,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.现将△ABC平移,使点A变换为点D,点E、F分别是B、C的对应点.
(1)请画出平移后的△DEF,并求△DEF的面积;
(2)若连接AD、CF,则这两条线段之间的关系是________________ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com