20£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãOΪ×ø±êÔ­µã£¬Å×ÎïÏßy=ax2+bx-5ÓëxÖá½»ÓÚA¡¢BÁ½µã£¨µãAÔÚµãBµÄ×ó²à£©£¬ÓëyÖá½»µãΪC£¬Ö±Ïßy=-x-2¾­¹ýµãA£¬½»Å×ÎïÏßÓÚµãD£¬½»yÖáÓÚµãE£¬Á¬½ÓCD£¬²¢ÇÒ¡ÏADC=45¡ã£®
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¹ýµãAµÄÖ±ÏßAFÓëÅ×ÎïÏßµÄÁíÒ»¸ö½»µãΪF£¬sin¡ÏBAF=$\frac{\sqrt{5}}{5}$£¬ÇóµãFµÄ×ø±ê£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µãPÊÇÖ±ÏßAFÏ·½Å×ÎïÏßÉÏÒ»µã£¬¹ýµãP×÷PQ¡ÍAF´¹×ãΪQ£¬ÈôPE=EQ£¬ÇóµãPµÄ×ø±ê£®

·ÖÎö £¨1£©ÏÈÈ·¶¨C£¨0£¬-5£©£¬A£¨-2£¬0£©£¬E£¨0£¬-2£©£¬Ôò¿ÉÅжϡ÷OAEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬ËùÒÔ¡ÏOAE=45¡ã£¬ÓÚÊÇ¿ÉÅжÏCD¡ÎxÖᣬËùÒÔ¡÷CDEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬Ò×µÃD£¨3£¬-5£©£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©Ö±ÏßAF½»yÖáÓÚG£¬Èçͼ£¬ÀûÓÃÈý½Çº¯ÊýµÃµ½s$\frac{OG}{AG}$=$\frac{1}{\sqrt{5}}$£¬ÉèOG=t£¬ÔòAG=$\sqrt{5}$t£¬OA=2t£¬ËùÒÔ2t=2£¬½âµÃt=1£¬ÓÚÊǵõ½G£¨0£¬1£©£¬Ò×µÃÖ±ÏßAGµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£¬È»ºóͨ¹ý½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=\frac{1}{2}{x}^{2}-\frac{3}{2}x-5}\end{array}\right.$µÃFµãµÄ×ø±ê£»
£¨3£©×÷EM¡ÍPQÓÚM£¬Èçͼ£¬ÀûÓÃÁ½Ö±Ïß´¹Ö±ÎÊÌ⣬ÉèPQµÄ½âÎöʽΪy=-2x+m£¬ÀûÓÃÁ½Ö±ÏßƽÐÐÎÊÌâµÃµ½EMµÄ½âÎöʽΪy=$\frac{1}{2}$x-2£¬Ôò½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=-2x+m}\end{array}\right.$µÃQ£¨$\frac{2}{5}$m-$\frac{2}{5}$£¬$\frac{1}{5}$m+$\frac{4}{5}$£©£¬ÉèP£¨a£¬b£©£¬¸ù¾ÝµÈÑüÈý½ÇÐεÄÐÔÖʵÃMµãÏ߶ÎPQµÄÖе㣬ÀûÓÃÏ߶ÎÖеã×ø±ê¹«Ê½µÃµ½MµãµÄ×ø±êΪ[$\frac{1}{2}$£¨a+$\frac{2}{5}$m-$\frac{2}{5}$£©£¬$\frac{1}{2}$£¨b+$\frac{1}{5}$m+$\frac{4}{5}$£©]£¬ÀûÓõãMµãÔÚÖ±Ïßy=$\frac{1}{2}$x-2ÉϵÃ$\frac{1}{4}$£¨a+$\frac{2}{5}$m-$\frac{2}{5}$£©-2=$\frac{1}{2}$£¨b+$\frac{1}{5}$m+$\frac{4}{5}$£©£¬ËùÒÔb=$\frac{1}{2}$a-5£¬È»ºó°ÑP£¨a£¬$\frac{1}{2}$a-5£©´úÈëÅ×ÎïÏß½âÎöʽµÃ$\frac{1}{2}$a2-$\frac{3}{2}$a-5=$\frac{1}{2}$a-5£¬×îºó½â¹ØÓÚaµÄ·½³Ì¼´¿ÉµÃµ½Pµã×ø±ê£®

½â´ð ½â£º£¨1£©µ±x=0ʱ£¬y=ax2+bx-5=-5£¬ÔòC£¨0£¬-5£©£¬
µ±y=0ʱ£¬-x-2=0£¬½âµÃx=-2£¬ÔòA£¨-2£¬0£©£¬
µ±x=0ʱ£¬y=-x-2=0£¬ÔòE£¨0£¬-2£©£¬
¡àOA=OE£¬
¡à¡÷OAEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡à¡ÏOAE=45¡ã£¬
¡ß¡ÏADC=45¡ã£¬
¡àCD¡ÎxÖᣬ
¡à¡÷CDEΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àCD=CE=3£¬
¡àD£¨3£¬-5£©£¬
°ÑA£¨-2£¬0£©£¬D£¨3£¬-5£©´úÈëy=ax2+bx-5µÃ$\left\{\begin{array}{l}{4a-2b-5=0}\\{9a+3b-5=-5}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=-\frac{3}{2}}\end{array}\right.$£¬
¡àÅ×ÎïÏߵĽâÎöʽΪy=$\frac{1}{2}$x2-$\frac{3}{2}$x-5£»

£¨2£©Ö±ÏßAF½»yÖáÓÚG£¬Èçͼ£¬
ÔÚRt¡÷AOGÖУ¬sin¡ÏOAG=$\frac{OG}{AG}$=$\frac{\sqrt{5}}{5}$=$\frac{1}{\sqrt{5}}$£¬
ÉèOG=t£¬AG=$\sqrt{5}$t£¬
¡àOA=$\sqrt{£¨\sqrt{5}t£©^{2}+{t}^{2}}$=2t£¬
¡à2t=2£¬½âµÃt=1£¬
¡àG£¨0£¬1£©£¬
Ò×µÃÖ±ÏßAGµÄ½âÎöʽΪy=$\frac{1}{2}$x+1£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=\frac{1}{2}{x}^{2}-\frac{3}{2}x-5}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$»ò$\left\{\begin{array}{l}{x=6}\\{y=4}\end{array}\right.$£¬
¡àFµãµÄ×ø±êΪ£¨6£¬4£©£»

£¨3£©×÷EM¡ÍPQÓÚM£¬Èçͼ£¬
¡ßPQ¡ÍAF£¬
¡àPQµÄ½âÎöʽ¿ÉÉèΪy=-2x+m£¬
¡ßEM¡ÎAF£¬
¡àEMµÄ½âÎöʽΪy=$\frac{1}{2}$x-2£¬
½â·½³Ì×é$\left\{\begin{array}{l}{y=\frac{1}{2}x+1}\\{y=-2x+m}\end{array}\right.$µÃ$\left\{\begin{array}{l}{x=\frac{2}{5}m-\frac{2}{5}}\\{y=\frac{1}{5}m+\frac{4}{5}}\end{array}\right.$£¬ÔòQ£¨$\frac{2}{5}$m-$\frac{2}{5}$£¬$\frac{1}{5}$m+$\frac{4}{5}$£©£¬
ÉèP£¨a£¬b£©£¬
¡ßEQ=EP£¬
¡àQM=PM£¬
¡àMµãµÄ×ø±êΪ[$\frac{1}{2}$£¨a+$\frac{2}{5}$m-$\frac{2}{5}$£©£¬$\frac{1}{2}$£¨b+$\frac{1}{5}$m+$\frac{4}{5}$£©]£¬
°ÑM[$\frac{1}{2}$£¨a+$\frac{2}{5}$m-$\frac{2}{5}$£©£¬$\frac{1}{2}$£¨b+$\frac{1}{5}$m+$\frac{4}{5}$£©]´úÈëy=$\frac{1}{2}$x-2µÃ$\frac{1}{4}$£¨a+$\frac{2}{5}$m-$\frac{2}{5}$£©-2=$\frac{1}{2}$£¨b+$\frac{1}{5}$m+$\frac{4}{5}$£©£¬
¡àb=$\frac{1}{2}$a-5£¬
¼´P£¨a£¬$\frac{1}{2}$a-5£©£¬
°ÑP£¨a£¬$\frac{1}{2}$a-5£©´úÈëy=$\frac{1}{2}$x2-$\frac{3}{2}$x-5µÃ$\frac{1}{2}$a2-$\frac{3}{2}$a-5=$\frac{1}{2}$a-5£¬½âµÃa1=0£¬a2=4£¬
¡àPµã×ø±êΪ£¨0£¬-5£©»ò£¨4£¬-3£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣺ÊìÁ·ÕÆÎÕ¶þ´Îº¯ÊýͼÏóÉϵãµÄ×ø±êÌØÕ÷¡¢¶þ´Îº¯ÊýµÄÐÔÖʺ͵ÈÑüÖ±½ÇÈý½ÇÐεĹØϵ£»»áÀûÓôý¶¨ÏµÊý·¨Çóº¯Êý½âÎöʽ£¬Àí½âÁ½¸öÒ»´Îº¯ÊýͼÏóƽÐлò´¹Ö±µÄÒ»´ÎÏîϵÊýµÄ¹Øϵ£»Àí½â×ø±êÓëͼÐÎÐÔÖÊ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÄÜÓÃƽ·½²î¹«Ê½¼ÆËãµÄÊÇ£¨¡¡¡¡£©
A£®£¨-x+2y£©£¨x-2y£©B£®£¨2x-y£©£¨2y+x£©C£®£¨m-n£©£¨n-m£©D£®99¡Á101

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýy=-2xÖеij£Á¿ÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èç¹ûʽ×Ó$\sqrt{a-2}$ÊǶþ´Î¸ùʽ£¬ÄÇôaµÄÈ¡Öµ·¶Î§ÊÇa¡Ý2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èçͼ£¬ÊýÖáÉÏA¡¢BÁ½µã±íʾµÄÊý·Ö±ðΪ-1ºÍ$\sqrt{3}$£¬µãAÊÇBCµÄÖе㣬ÔòµãCËù±íʾµÄÊý£¨¡¡¡¡£©
A£®-2-$\sqrt{3}$B£®-1-$\sqrt{3}$C£®-2+$\sqrt{3}$D£®1+$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èçͼ£¬Å×ÎïÏßy=-x2+2x+3ÓëyÖá½»ÓÚµãC£¬µãD£¨0£¬1£©£¬µãPÊÇÅ×ÎïÏßÉϵĶ¯µã£¬Èô¡÷PCDÊÇÒÔCDΪµ×µÄµÈÑüÈý½ÇÐΣ¬ÔòµãPµÄ×ø±êΪ£¨1+$\sqrt{2}$£¬2£©»ò£¨1-$\sqrt{2}$£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®Ò»¸öÕý¶à±ßÐεÄÒ»¸öÄÚ½ÇÊÇÓëÆäÏàÁÚµÄÒ»¸öÍâ½ÇµÄ3±¶£¬ÔòÕâ¸öÕý¶à±ßÐεıßÊýÊÇ8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®°Ùô´¾º¶É£¬¼¤Çé·ÉÑΪ¼ÍÄî°®¹úÊ«ÈËÇüÔ­£¬Ä³ÊоÙÐÐÁúÖÛÈü£®¼×¡¢ÒÒÁ½Ö§ÁúÖÛ¶ÓÔÚ±ÈÈüʱ£¬Â·³Ìy£¨Ã×£©Óëʱ¼äx£¨·ÖÖÓ£©Ö®¼äµÄº¯ÊýͼÏóÈçͼËùʾ£¬¸ù¾ÝͼÏó»Ø´ðÏÂÁÐÎÊÌ⣺
£¨1£©×îÏÈ´ïµ½ÖÕµãµÄÊÇÒÒ¶Ó£¬±ÈÁíÒ»¶ÔÔç0.6·ÖÖÓµ½´ï£»
£¨2£©ÔÚ±ÈÈü¹ý³ÌÖУ¬ÒÒ¶ÓÔÚµÚ1·ÖÖӺ͵Ú3·ÖÖÓʱÁ½´Î¼ÓËÙ£»
£¨3£©ÇóÔÚʲôʱ¼ä·¶Î§ÄÚ£¬¼×¶ÓÁìÏÈ£¿
£¨4£©ÏàÓöÇ°£¬¼×ÒÒÁ½¶ÓÖ®¼äµÄ¾àÀë²»³¬¹ý30mµÄʱ¼ä·¶Î§ÊÇ0£¼x¡Ü0.5»ò3¡Üx¡Ü$\frac{10}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼×¡¢ÒÒÁ½¼ÒÓ£ÌÒ²ÉÕªÔ°µÄÆ·ÖÊÏàͬ£¬ÏúÊÛ¼Û¸ñÒ²Ïàͬ£¬¡°ÎåÒ»Æڼ䡱£¬Á½¼Ò¾ùÍƳöÁËÓŻݷ½°¸£¬¼×²ÉÕªÔ°µÄÓŻݷ½°¸ÊÇ£ºÓοͽøÔ°Ð蹺Âò50ÔªµÄÃÅƱ£¬²ÉÕªµÄ²ÝÝ®ÁùÕÛÓŻݣ»ÒÒ²ÉÕªÔ°µÄÓŻݷ½°¸ÊÇ£ºÓοͽøÔ°²»Ð蹺ÂòÃÅƱ£¬²ÉÕªÔ°µÄ²ÝÝ®³¬¹ýÒ»¶¨ÊýÁ¿ºó£¬³¬¹ý²¿·Ö´òÕÛÓŻݣ®ÓÅ»ÝÆڼ䣬ÉèijÓο͵IJÝÝ®²ÉÕªÁ¿Îªx£¨Ç§¿Ë£©£¬ÔڼײÉÕªÔ°ËùÐè×Ü·ÑÓÃΪy1£¨Ôª£©£¬ÔÚÒÒ²ÉÕªÔ°ËùÐè×Ü·ÑÓÃΪy2£¨Ôª£©£¬Í¼ÖÐÕÛÏßOAB±íʾy2ÓëxÖ®¼äµÄº¯Êý¹Øϵ£®
£¨1£©¼×¡¢ÒÒÁ½²ÉÕªÔ°ÓÅ»ÝÇ°µÄ²ÝÝ®ÏúÊÛ¼Û¸ñÊÇÿǧ¿Ë30Ôª£»
£¨2£©Çóy1¡¢y2ÓëxµÄº¯Êý±í´ïʽ£»
£¨3£©ÔÚͼÖл­³öy1ÓëxµÄº¯ÊýͼÏó£¬ÈôijÈËÏëÔÚ¡°ÎåÒ»Æڼ䡱²ÉÕªÓ£ÌÒ25ǧ¿Ë£¬ÄÇô¼×¡¢ÒÒÄĸö²ÉÕªÔ°½ÏΪÓŻݣ¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸