精英家教网 > 初中数学 > 题目详情
10.已知:如图,AB∥CD,AB,CD与直线EF分别相交于点M和N,MP平分∠AMF,NQ平分∠DNE.求证:MP∥NQ.

分析 根据平行线的性质得出∠AMN=∠DNM,根据角平分线定义得出∠PMN=$\frac{1}{2}$∠AMN,∠QNM=$\frac{1}{2}$∠DNM,求出∠PMN=∠QNM,根据平行线的判定得出即可.

解答 证明:∵AB∥CD,
∴∠AMN=∠DNM,
∵MP平分∠AMF,NQ平分∠DNE,
∴∠PMN=$\frac{1}{2}$∠AMN,∠QNM=$\frac{1}{2}$∠DNM,
∴∠PMN=∠QNM,
∴MP∥NQ.

点评 本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知直角三角形中一条直角边长为4,如果斜边长与另一条直角边长的和是10,求斜边上的中线长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.问题提出
(1)如图1,将直角三角板的直角顶点P放在正方形ABCD的对角线AC上,一条直角边经过点B,另一条直角边交边DC于点E,线段PB和线段PE相等吗?请证明;
问题探究
(2)如图2,移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;
问题解决
(3)继续移动三角板,使三角板的直角顶点P在对角线AC上,一条直角边经过点B,另一条直角边交DC的延长线于点E,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在?ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为2$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.
(1)求抛物线的函数表达式;
(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=120°,对角线AC的长为10$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.                            运动员甲测试成绩表
测试序号12345678910
成绩(分)7687758787

(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S2=0.8、S2=0.4、S2=0.8)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)2$\sqrt{\frac{1}{2}}$-$\sqrt{18}$+$\sqrt{8}$
(2)(2$\sqrt{3}$-1)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.先化简,再求值:($\frac{x^2}{x-2}$+$\frac{4}{2-x}$)÷$\frac{{{x^2}+4x+4}}{x}$.其中x是0,1,2这三个数中合适的数.

查看答案和解析>>

同步练习册答案