精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,点E、F分别在BC、CD上,AEF是等边三角形,连接AC交EF于G,下列结论:BE=DF,②∠DAF=15°,AC垂直平分EF,BE+DF=EF,SCEF=2SABE.其中正确结论有(  )个

A. 4 B. 3 C. 2 D. 1

【答案】C

【解析】解:四边形ABCD是正方形,

∴AB=BC=CD=AD∠B=∠BCD=∠D=∠BAD=90°

∵△AEF等边三角形,

∴AE=EF=AF∠EAF=60°

∴∠BAE+∠DAF=30°

Rt△ABERt△ADF中,

Rt△ABE≌Rt△ADFHL),

∴BE=DF(故正确).

∠BAE=∠DAF

∴∠DAF+∠DAF=30°

∠DAF=15°(故正确),

∵BC=CD

∴BC﹣BE=CD﹣DF,即CE=CF

∵AE=AF

∴AC垂直平分EF.(故正确).

EC=x,由勾股定理,得

EF=xCG=x

AG=AEsin60°=EFsin60°=2×CGsin60°=x

∴AC=

∴AB=

∴BE=﹣x=

∴BE+DF=x﹣x≠x,(故错误),

∵SCEF=

SABE==

∴2SABE==SCEF,(故正确).

综上所述,正确的有4个,

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,AB=6,第一次平移长方形ABCD沿AB的方向向右平移5个单位,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位,得到长方形A2B2C2D2…,第n次平移将长方形An﹣1Bn﹣1Cn﹣1Dn﹣1沿An﹣1Bn﹣1的方向向右平移5个单位,得到长方形AnBnCnDn(n>2),若ABn的长度为2016,则n的值为(   )

A. 400 B. 401 C. 402 D. 403

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ACB=90°,点DAB边的点,过D作DEBC点E,点P是边BC上的一个动点,APCD相交于点Q.APPD的值最小时,AQPQ之间的数量关系

A.AQ= PQ B.AQ=3PQ C.AQ=PQ D.AQ=4PQ

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂接受了20天内生产1200GH型电子产品的总任务. 已知每台GH型产品由4G型装置和3H型装置配套组成. 工厂现有80名工人,每个工人每天能加工6G型装置或3H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的GH型装置数量正好全部配套组成GH型产品.

1按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?

2为了在规定期限内完成总任务,工厂决定补充一些新工人,这些新工人只能独立进行G 型装置的加工,且每人每天只能加工4G型装置. 请问至少需要补充多少名新工人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.

(1求证:BD=CD;

(2如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是潜望镜工作原理示意图,阴影部分是平行放置在潜望镜里的两面镜子.已知光线经过镜子反射时,有∠1=∠2,∠3=∠4,请解释进入潜望镜的光线l为什么和离开潜望镜的光线m是平行的?

请把下列解题过程补充完整.

理由:

∵AB∥CD(已知)

   (两直线平行,内错角相等)

∵∠1=∠2,∠3=∠4   

∴∠1=∠2=∠3=∠4   

∴180°﹣∠1﹣∠2=180°﹣∠3﹣∠4(平角定义)

即:    (等量代换)

   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,四边形ABCD中,AB=3cmAD=4cmBC=13cmCD=12cm,且∠A=90°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知x=1是方程x2+px+1=0的一个实数根,则p的值是(  )

A. 0 B. 1 C. 2 D. ﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】|x-3|+|y-2|=0 成立的条件是( ).

A. x=3 ; B. y=2; C. x=3且y=2; D. x、y为任意数.

查看答案和解析>>

同步练习册答案