精英家教网 > 初中数学 > 题目详情
2.如图,在Rt△ABC中,∠C=90°,AB=13,AC=12,则∠A的正弦值为(  )
A.$\frac{5}{12}$B.$\frac{12}{13}$C.$\frac{12}{5}$D.$\frac{5}{13}$

分析 根据勾股定理,可得BC的长,根据角的正弦等于角的对边比斜边,可得答案.

解答 解:在Rt△ABC中,∠C=90°,AB=13,AC=12,
∴BC=$\sqrt{A{B}^{2}-A{C}^{2}}$=5,
∴sin∠A=$\frac{BC}{AB}$=$\frac{5}{13}$,
故选D,

点评 本题考查了锐角三角函数的定义,解本题的关键是掌握锐角三角函数的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=$\sqrt{2}$;⑤S四边形CDEF=$\frac{5}{2}$S△ABF,其中正确的结论有①②③⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,P为边长为6的正方形ABCD的边BC上一动点(P与B、C不重合),Q在CD上,且CQ=BP,连接AP、BQ,将△BQC沿BQ所在的直线翻折得到△BQE,延长QE交BA的延长线于点F.
(1)试探究AP与BQ的数量与位置关系,并证明你的结论;
(2)当E是FQ的中点时,求BP的长;
(3)若BP=2PC,求QF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.一个口袋中有红球、白球共20个,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了200次球,发现有140次摸到红球,估计这个口袋中红球的数量为14个.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8,半径为$\sqrt{3}$的⊙M与射线BA相切,切点为N,且AN=3,将Rt△ABC绕点A顺时针旋转,设旋转角为α(0°≤α≤180°)
(1)当α为60°或120°时,AC和⊙M相切;
(2)当AC落在AN上时,设点B,C的对应点分别是点D,E.
①画出旋转后的Rt△ADE;(草图即可)
②Rt△ADE的直角边DE被⊙M截得的弦PQ的长为2$\sqrt{2}$;
③判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由;
(3)设点M与AC的距离为x,在旋转过程中,当边AC与⊙M有一个公共点时,直接写出x的取值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读材料:如图1,在平面直角坐标系中,以坐标平面内任意一点M(a,b)为圆心,半径为r作圆,点P(x,y)在⊙M上,则必有(x-a)2+(y-b)2=r2
尝试证明:为了证明阅读材料上的结论,小明作了辅助线:过点M和点P分别作x轴、y轴的平行线,两平行线交于点N可得点N的坐标是(x,b)(用字母表示),完成小明的证明过程.
结论应用:如图2,点A、B、C均在坐标轴上,OB=OC=OA=4,过A、O、B作⊙D,E是⊙D上任意一点,连接CE,BE.
(1)当线段CE经过点D时,求点E的坐标;
(2)在点E的运动过程中,线段CE和线段BE的长度随之变化,试求CE2+BE2的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).
(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;
(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;
(3)当m=4时,抛物线上有两点M(x1,y1)和N(x2,y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F.
(1)当点E是线段BC的中点时,求证:AF=AB+CF.
(2)当∠BAE=30°时,求证:AF=2AB-2CF;
(3)当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明.
 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),把剩余部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则拼得的长方形的周长为(4a+16)cm.(用含a的代数式表示)

查看答案和解析>>

同步练习册答案