精英家教网 > 初中数学 > 题目详情
如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N.有下列四个结论:①DF=CF;②BF⊥EN;③△BEN是等边三角形;④SBEF=3SDEF.其中,将正确结论的序号全部选对的是(  )

A.①②③
B.①②④
C.②③④
D.①②③④
B
由折叠的性质、矩形的性质与角平分线的性质,可证得CF=FM=DF;
易求得∠BFE=∠BFN,则可得BF⊥EN;易证得△BEN是等腰三角形,但无法判定是等边三角形;易求得BM=2EM=2DE,即可得EB=3EM,根据等高三角形的面积比等于对应底的比,即可求得答案.
解:∵四边形ABCD是矩形,
∴∠D=∠BCD=90°,
由折叠的性质可得:∠EMF=∠D=90°,DF=MF,
即FM⊥BE,CF⊥BC,
∵BF平分∠EBC,
∴CF=MF,
∴DF=CF;故①正确;

∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,
∴∠BFM=∠BFC,
∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN,
∵∠BFE+∠BFN=180°,
∴∠BFE=90°,
即BF⊥EN,故②正确;
∵在△DEF和△CNF中,

∴△DEF≌△CNF(ASA),
∴EF=FN,
∴BE=BN,
但无法求得△BEN各角的度数,
∴△BEN不一定是等边三角形;故③错误;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,
∴BM=BC=AD=2DE=2EM,
∴BE=3EM,
∴S△BEF=3S△EMF=3S△DEF
故④正确.
故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图正方形网格中的△ABC,若小方格边长为1,请你根据所学的知
(1)求△ABC的面积
(2)判断△ABC是什么形状? 并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

若三角形的两边长分别为3、4,且周长为整数,这样的三角形共有  个.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,AB=AC,点D在边BC所在的直线上,过点D作DF∥AC交直线AB于点F,DE∥AB交直线AC于点E.
(1)当点D在边BC上时,如图①,求证:DE+DF=AC.
(2)当点D在边BC的延长线上时,如图②;当点D在边BC的反向延长线上时,如图③,请分别写出图②、图③中DE,DF,AC之间的数量关系,不需要证明.
(3)若AC=6,DE=4,则DF=             

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.
(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法).
①作∠DAC的平分线AM. ②连接BE并延长交AM于点F.
(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于______度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为SABC,SADF,SBEF,且SABC=12,则SADF-SBEF=(     )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

一个六边形的六个内角都是120度,连续四边的长为1,3,4,2,则该六边形的周长是(    )。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是 (        )

查看答案和解析>>

同步练习册答案