6£®Èçͼ£¬ÒÑÖªÅ×ÎïÏßy=-x2+2x+3µÄ¶¥µãΪM£¬ÇÒ¾­¹ýµãN£¨2.3£©£¬ÓëxÖá½»ÓÚÁ½µã£¨µãAÔÚµãB×ó²à£©£¬ÓëyÖá½»ÓÚµãC£®
£¨1£©Ìî¿Õ£ºµãAµÄ×ø±êÊÇ£¨-1£¬0£©£¬µãCµÄ×ø±êÊÇ£¨0£¬3£©£¬¶¥µãMµÄ×ø±êÊÇ£¨1£¬4£©£»
£¨2£©ÈôÖ±Ïßy=kx+t¾­¹ýC¡¢MÁ½µã£¬ÇÒÓëxÖá½»ÓÚµãD£¬ÊÔ˵Ã÷ËıßÐÎCDANÊÇƽÐÐËıßÐΣ»
£¨3£©Ö±Ïßy=mx+2ÓëÅ×ÎïÏß½»ÓÚT¡¢QÁ½µã£¬ÊÇ·ñ´æÔÚÕâÑùµÄʵÊým£¬Ê¹ÒÔÏ߶ÎTQΪֱ¾¶µÄԲǡºÃ¹ý×ø±êÔ­µã£¿Èô´æÔÚ£¬ÇëÇó³ömµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÀûÓÃÅä·½·¨Çó³ö¶þ´Îº¯Êý¶¥µã×ø±ê£¬ÔÙ¸ù¾ÝÅ×ÎïÏß½âÎöʽÇóµãA¡¢B¡¢CµÄ×ø±ê£»
£¨2£©¸ù¾ÝM¡¢CÁ½µã×ø±êÇóÖ±Ïßy=kx+t½âÎöʽ£¬µÃ³öDµã×ø±ê£¬ÇóÏ߶ÎAD£¬ÓÉC¡¢NÁ½µã×ø±ê¿ÉÖªCN¡ÎxÖᣬÔÙÇóCN£¬Ö¤Ã÷CNÓëADƽÐÐÇÒÏàµÈ£¬ÅжÏËıßÐÎCDANÊÇƽÐÐËıßÐΣ»
£¨3£©´æÔÚ£®ÈçͼÉèT£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬·Ö±ð¹ýT¡¢Q×÷TF¡ÍyÖᣬQG¡ÍxÖᣬÁªÁ¢Ö±ÏßTQ½âÎöʽÓëÅ×ÎïÏß½âÎöʽ£¬¿ÉµÃx1£¬y1£¬x2£¬y2Ö®¼äµÄ¹Øϵ£¬µ±ÒÔÏ߶ÎTQΪֱ¾¶µÄԲǡºÃ¹ý×ø±êÔ­µãʱ£¬¡ÏTOQ=90¡ã£¬ÀûÓû¥Óà¹Øϵ¿ÉÖ¤¡÷TOF¡×¡÷QOG£¬ÀûÓÃÏàËƱȵóöÏ߶ιØϵ£¬½áºÏx1£¬y1£¬x2£¬y2Ö®¼äµÄ¹ØϵÇómµÄÖµ£®

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏß½âÎöʽΪy=-1£¨x-1£©2+4£¬
¡à¶¥µãMµÄ×ø±êÊÇ£º£¨1£¬4£©£¬
y=-x2+2x+3£¬
Áîx=0£¬µÃy=3£¬ÔòC£¨0£¬3£©£¬
Áîy=0£¬µÃx=-1»ò3£¬
ÔòA£¨-1£¬0£©£¬B£¨3£¬0£©£»
¹Ê´ð°¸Îª£º£¨-1£¬0£©£¬£¨0£¬3£©£¬£¨1£¬4£©£»

£¨2£©ËıßÐÎCDANÊÇƽÐÐËıßÐΣ®
ÀíÓÉ£º½«C£¨0£¬3£©£¬M£¨1£¬4£©£¬´úÈëÖ±Ïßy=kx+tÖУ¬µÃ$\left\{\begin{array}{l}{t=3}\\{k+t=4}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=1}\\{t=3}\end{array}\right.$£¬
Ö±ÏßCM½âÎöʽΪ£ºy=x+3£¬
ÔòD£¨-3£¬0£©£¬
¡ßC£¨0£¬3£©£¬N£¨2£¬3£©£¬
¡àCN¡ÎxÖᣬÇÒCN=2-0=2£¬
ÓÖ¡ßA£¨-1£¬0£©£¬D£¨-3£¬0£©£¬
¡àAD=-1-£¨-3£©=2£¬
¡àËıßÐÎCDANÊÇƽÐÐËıßÐΣ»

£¨3£©´æÔÚ£®
ÈçͼÉèT£¨x1£¬y1£©£¬Q£¨x2£¬y2£©£¬·Ö±ð¹ýT¡¢Q×÷TF¡ÍyÖᣬQG¡ÍxÖᣬ
ÁªÁ¢$\left\{\begin{array}{l}{y={-x}^{2}+2x+3}\\{y=mx+2}\end{array}\right.$£¬
½âµÃ£ºx2+£¨m-2£©x-1=0£¬
Ôòx1+x2=2-m£¬x1x2=-1£¬
µ±ÒÔÏ߶ÎTQΪֱ¾¶µÄԲǡºÃ¹ý×ø±êÔ­µãʱ£¬¡ÏTOQ=90¡ã£¬
Ôò¡ÏTOF+¡ÏFOQ=¡ÏFOQ+¡ÏQOB=90¡ã£¬
Ôò¡ÏTOF=¡ÏQOB£¬¶ø¡ÏTFO=¡ÏQGO=90¡ã£¬
ËùÒÔ£¬¡÷TOF¡×¡÷QOG£¬
Ôò$\frac{TF}{QG}$=$\frac{OF}{OG}$£¬
¼´$\frac{-{x}_{1}}{{y}_{2}}$=$\frac{{y}_{1}}{{x}_{2}}$£¬
x1x2+y1y2=0£¬-1+£¨mx1+2£©£¨mx2+2£©=0£¬
-1+m2x1x2+2m£¨x1+x2£©+4=0£¬
-1-m2+2m£¨2-m£©+4=0£¬ÕûÀí£¬µÃ3m2-4m-3=0£¬
½âµÃ£ºm=$\frac{2¡À\sqrt{13}}{3}$£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÔËÓã¬ÒÔ¼°ÀûÓýâÎöʽÇóÅ×ÎïÏßÓë×ø±êÖáµÄ½»µã¡¢Æ½ÐÐËıßÐεÄÅж¨¶¨Àí¡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖʵÈ֪ʶ£¬ÕýÈ·µÃ³ö¡÷TOF¡×¡÷QOGÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½âÏÂÁв»µÈʽ»ò²»µÈʽ×飬
£¨1£©1-$\frac{x+3}{5}$¡Ýx-$\frac{x-1}{3}$                      
£¨2£©$\left\{\begin{array}{l}{4x+6£¼3x+7}\\{3x+14£¾4£¨2x-9£©}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÒÑ֪ƽÃæÖ±½Ç×ø±êϵÄÚA£¨2a-1£¬4£©£¬B£¨-3£¬3b+1£©£¬A¡¢B£»Á½µã¹ØÓÚyÖá¶Ô³Æ
£¨1£©ÇóA¡¢BµÄ×ø±ê£»
£¨2£©¶¯µãP¡¢Q·Ö±ð´ÓAµã¡¢Bµãͬʱ³ö·¢£¬ÑØÖ±ÏßABÏòÓÒÔ˶¯£¬Í¬Ïò¶øÐУ¬PµãµÄËÙ¶ÈÊÇÿÃë2¸öµ¥Î»³¤¶È£¬QµãµÄËÙ¶ÈÊÇÿÃë4¸öµ¥Î»³¤¶È£¬ÉèP¡¢QµÄÔ˶¯Ê±¼äΪtÃ룬Óú¬tµÄ´úÊýʽ±íʾÈý½ÇÐÎOPQµÄÃæ»ýS£¬²¢Ð´³ötµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚƽÃæÖ±½Ç×ø±êϵÖдæÔÚÒ»µãM£¬µãMµÄºá×Ý×ø±êÏàµÈ£¬ÇÒÂú×ãS¡÷PQM£ºS¡÷OPQ=3£º2£¬Çó³öµãMµÄ×ø±ê£¬²¢Çó³öµ±S¡÷AQM=15ʱ£¬Èý½ÇÐÎOPQµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®»¯¼ò5x-5£¨x+1£©µÄ½á¹ûÊÇ£¨¡¡¡¡£©
A£®-5B£®5C£®-1D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®·½³Ì0.25x=1µÄ½âÊÇx=4£»4x=1µÄ½âÊÇx=0.25£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®½«Ò»¸ö¶à±ßÐνØÈ¥Ò»½Ç£¨½ØÈ¥²¿·ÖΪһ¸öÈý½ÇÐΣ©µÃµ½Ò»¸öжà±ßÐεÄÄڽǺÍΪ1800¡ã£¬ÔòÔ­¶à±ßÐεıßÊýÊÇ£¨¡¡¡¡£©
A£®11B£®12C£®13D£®ÒÔÉ϶¼ÊÇ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®¶àÏîʽ3xy2-4x2y2z+1ÊÇÎå´ÎÈýÏîʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®25µÄËãÊõƽ·½¸ùΪ5£»£¨-2£©3µÄÁ¢·½¸ùÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®Èô-6Ã×±íʾµÍÓÚº£Æ½Ãæ6Ã×£¬Ôò¸ßÓÚº£Æ½Ãæ5Ã×¼Ç×÷+5Ã×£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸