精英家教网 > 初中数学 > 题目详情
代数式(
2
x+1)5
的运算可以转化为五个多项式(
2
x+1)•(
2
x+1)•(
2
x+1)•(
2
x+1)•(
2
x+1)
相乘,按多项式乘法法则,展开合并同类项后其乘积为:a5x5+a4x4+a3x3+a2x2+a1x+a0,其中a5、a4、a3、a2、a1、a0为乘积展开式各项的系数,因此,(
2
x+1)5
=a5x5+a4x4+a3x3+a2x2+a1x+a0
(1)求a0与a5的值;
(2)求(a0+a2+a42-(a1+a3+a52的值.
分析:根据所给信息,和多项式乘以多项式的特点,
(1)令x=0可求出a0的值.又因为a5是x5的系数,可求出a5的值.
(2)当x=1时,(
2
+1)5=a5+a4+a3+a2+a1+a0
当x=-1时,(-
2
+1)5=-a5+a4-a3+a2-a1+a0
再对所求式子变形,把①②代入化简即可.
解答:解:(1)∵(
2
x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0
令x=0,得到a0=1.
∵a5是x5的系数,
∴a5=(
2
5=4
2


(2)∵(
2
x+1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0在上述等式中:
当x=1时,(
2
+1)5=a5+a4+a3+a2+a1+a0
当x=-1时,(-
2
+1)5=-a5+a4-a3+a2-a1+a0
又∵(a0+a2+a42-(a1+a3+a52
=(a0+a1+a2+a3+a4+a5)•(a0-a1+a2-a3+a4-a5),
=(
2
+1)5(-
2
+1)5
=(1-2)5
=-1.
点评:本题考查了多项式乘以多项式,读懂题目信息并利用好信息是解题的关键,利用了特殊值代入法来化简求值使运算更加简便.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

代数式
2x+4
x-2
有意义的条件是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

代数式-2x,0,3x-y,
x+y
4
b
a
中,单项式的个数有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知实数x满足4x2-5x+1=0,则代数式2x+
12x
值为

查看答案和解析>>

科目:初中数学 来源: 题型:

已知y=3xy+x,求代数式
2x+3xy-2yx-2xy-y
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若代数式
2x+1
2-
x
有意义,则x的取值范围是
x≥0且x≠4
x≥0且x≠4

查看答案和解析>>

同步练习册答案