精英家教网 > 初中数学 > 题目详情
如图,直角梯形OABC中,AB∥OC,其中O(0,0),A(0,4
3
),B(4,4
3
),C(8,0),OH垂精英家教网直BC于H,若OH=4
3

(1)求∠HOC的度数;
(2)动点P从点O出发,沿线段OH向点H运动,动点Q从点A出发,沿线段AO向点O 运动,两点同时出发,速度都为每秒1个单位长度,设点P的运动时间为t秒.
①若直线QP交x轴的正半轴于点N,当t为何值时,QP=2PN;
②在P,Q的运动过程中,是否存在t值,使得△OPQ与△HOB相似,若存在,求出t的值;若不存在,请说明理由.
分析:(1)首先由三角函数,求得∠AOB的度数,由HL,可证得Rt△AOB≌Rt△HOB,即可求得∠HOC的度数;
(2)首先作辅助线:过点N与H作NK⊥x轴,即可得到相似三角形:△POQ∽△PKN,由相似三角形的对应边成比例,即可求得t的值;
(3)由相似三角形的判定,易得当QP⊥OH时,△OPQ∽△HOB,由三角函数的性质,即可求得当t=
4
3
3
时,△OPQ与△HOB相似.
解答:解:(1)∵OA=4
3
,AB=4,∠OAB=90°,
∴tan∠AOB=
AB
OA
=
3
3

∴∠AOB=30°,
∵OA=OH,OB=OB,∠BAO=∠BHO=90°,
∴Rt△AOB≌Rt△HOB(HL),
∴∠BOH=∠AOB=30°,
∴∠HOC=30°;
精英家教网
(2)①过点N与H作NK⊥x轴,
∴NK∥OA,
∴△POQ∽△PKN,
∴当
NK
OQ
=
PK
OP
=
PN
PQ
=
1
2
时,
∵OQ=4
3
-t,OP=t,
∴PK=
1
2
t,NK=
1
2
(4
3
-t),
∴OK=
3
2
t,
∵∠HOC=30°,
NK
OK
=
1
2
(4
3
-t)
3
2
t
=
4
3
-t
3t
=
1
2

∴t=
8
3
5

∴当t为
8
3
5
时,QP=2PN;
精英家教网当QP⊥OH时,△OPQ∽△HOB.
∵∠QPO=∠OHB=90°,∠QOP=∠OBH=60°,
∴△OPQ∽△HOB,
∴cos∠QOP=
OP
OQ
=
t
4
3
-t
=
1
2

∴t=
4
3
3

∴当t=
4
3
3
时,△OPQ与△HOB相似.
③当PQ⊥OA时,△OPQ∽△BOH,
cos∠QOP=
OQ
OP
=
4
3
-t
t
=
1
2

解得:t=
8
3
3
点评:此题考查了相似三角形的判定与性质,以及三角函数的性质与全等三角形的判定与性质.题目综合性很强,难度比较大,解题时要注意仔细分析求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D是BC上一点,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
精英家教网
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)将△AEF沿一条边翻折,翻折前后两个三角形组成的四边形能否成为菱形?若能,请直接写出符合条件的x值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形OABF中,∠OAB=∠B=90°,A点在x轴上,双曲线y=
k
x
过点F,与AB交于E点,连EF,若
BF
OA
=
2
3
,S△BEF=4,则k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,直角梯形OABC中,∠OAB=∠B=90°,A点在x轴上,双曲线y=
kx
过点C和AB中点D,若S梯形OABC=6,则该双曲线的解析式为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上,OA∥BC,D精英家教网是BC上一点,BD=
1
4
OA=
2
,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF是等腰三角形时,将△AEF沿EF折叠,得到△A'EF,求△A'EF与五边形OEFBC重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图.直角梯形OABC的直角顶点O是坐标原点,边OA,OC分别在x轴、y轴的正半轴上.OA∥BC,OA=4
2
,OC=
3
2
2

∠OAB=45°,D是BC上一点,CD=
3
2
2
.E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°,设OE=x,AF=y.
(1)AB=
 
,BC=
 
,∠DOE=
 

(2)证明△ODE∽△AEF,并确定y与x之间的函数关系;
(3)当AF=EF时,将△AEF沿EF折叠,得到△A′EF,求△A′EF与五边形OEFBC重叠部分的面积.
精英家教网

查看答案和解析>>

同步练习册答案