A. | B. | C. | D. |
分析 利用AB=AC可得∠ABC=∠ACB,进而可得∠ABD=∠ACE,然后证明∠ADB=∠CAE,可得△ADB∽△EAC,根据相似三角形的对应边成比例可得y与x之间的函数关系式,从而作出判断.
解答 解:∵AB=AC,∠BAC=40°,
∴∠ABC=∠ACB=70°,
∴∠ABD=∠ACE,∠ADB+∠BAD=70°,
∵∠DAE=110°,
∴∠BAD+∠CAE=70°,
∴∠ADB=∠CAE,
∴△ADB∽△EAC,
∴$\frac{DB}{AC}=\frac{AB}{EC}$,
∴xy=4,
解得y=$\frac{4}{x}$.
故选:A.
点评 本题主要考查了相似三角形的判定与性质和函数的图象,利用两角对应相等得到两三角形相似是解决本题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | a=3 | B. | a≤3 | C. | a>3 | D. | a≥3 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com