精英家教网 > 初中数学 > 题目详情
如图甲,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连接PQ,设运动时间为t(s)(0<t<4),解答下列问题:
(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?
(2)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;′
(3)当t为何值时,△APQ是等腰三角形?

 
(1)当t为秒时,S最大值为cm2;
当四边形PQP′C为菱形时,t的值是s;
当t为s或s或s时,△APQ是等腰三角形.

试题分析:
(1)过点P作PH⊥AC于H,由△APH∽△ABC,得出=,从而求出AB,再根据=,得出PH=3﹣t,则△AQP的面积为:AQ•PH=t(3﹣t),最后进行整理即可得出答案;
(2)连接PP′交QC于E,当四边形PQP′C为菱形时,得出△APE∽△ABC,=,求出AE=﹣t+4,再根据QE=AE﹣AQ,QE=QC得出﹣t+4=﹣t+2,再求t即可;
(3)由(1)知,PD=﹣t+3,与(2)同理得:QD=﹣t+4,从而求出PQ=
在△APQ中,分三种情况讨论:①当AQ=AP,即t=5﹣t,②当PQ=AQ,即=t,③当PQ=AP,即=5﹣t,再分别计算即可
试题解析:
解:(1)如图甲,过点P作PH⊥AC于H,
∵∠C=90°,
∴AC⊥BC,
∴PH∥BC,
∴△APH∽△ABC,
=
∵AC=4cm,BC=3cm,
∴AB=5cm,
=
∴PH=3﹣t,
∴△AQP的面积为:
S=×AQ×PH=×t×(3﹣t)=﹣(t﹣)2+
∴当t为秒时,S最大值为cm2.
(2)如图乙,连接PP′,PP′交QC于E,
当四边形PQP′C为菱形时,PE垂直平分QC,即PE⊥AC,QE=EC,
∴△APE∽△ABC,
=
∴AE===﹣t+4
QE=AE﹣AQ═﹣t+4﹣t=﹣t+4,
QE=QC=(4﹣t)=﹣t+2,
∴﹣t+4=﹣t+2,
解得:t=
∵0<<4,
∴当四边形PQP′C为菱形时,t的值是s;
(3)由(1)知,
PD=﹣t+3,与(2)同理得:QD=AD﹣AQ=﹣t+4
∴PQ===
在△APQ中,
①当AQ=AP,即t=5﹣t时,解得:t1=
②当PQ=AQ,即=t时,解得:t2=,t3=5;
③当PQ=AP,即=5﹣t时,解得:t4=0,t5=
∵0<t<4,
∴t3=5,t4=0不合题意,舍去,
∴当t为s或s或s时,△APQ是等腰三角形.

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.
(1)求证:△BEF∽△CDF;
(2)求CF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.
(1)求证:△APB≌△APD;
(2)已知DF∶FA=1∶2,设线段DP的长为x,线段PF的长为y.
①求y与x的函数关系式;
②当x=6时,求线段FG的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,菱形ABCD中,AC=8,BD=6,将△ABD沿AC方向向右平移到△A′B′D′的位置,若平移距离为2,则阴影部分的面积为_________

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在下列方格纸中,
(1)画出△ABC关于直线l对称的图形△A1B1C1
(2)以O为位似中心,将△ABC放大到原来的2倍的△A2B2C2.(保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

顶角为36°的等腰三角形称为黄金三角形.如图,△ABC、△BDC、△DEC都是黄金三角形,已知AB=1,则DE=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,下列形状的边框,不相似的是(  )
A. B. C. D.  

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是(  )

A. AB=24m               B. MN∥AB
C. △CMN∽△CAB         D. CM:MA=1:2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,O为矩形ABCD的中心,M为BC边上一点,N为DC边上一点,ON⊥OM,若AB=6,AD=4,设OM=x,ON=y,则y与x的函数关系式为________.

查看答案和解析>>

同步练习册答案