精英家教网 > 初中数学 > 题目详情

【题目】如图1,小明将一张长为4、宽为3的矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),将这两张三角纸片摆成如图3的形状,但点BCFD在同一条直线上,且点C与点F重合(在图3至图6中统一用点F表示).

小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.

1)将图3中的ABF沿BD向右平移到图4的位置,其中点B与点F 重合,请你求出平移的距离

2在图5中若∠GFD60°,则图3中的ABF绕点 方向旋转 到图5的位置;

3)将图3中的ABF沿直线AF翻折到图6的位置,AB1DE于点H试问:AEHHB1D的面积大小关系.说明理由.

【答案】13;(2)点F、顺时针、30°(或者逆时针、330°)3)相等理由见解析.

【解析】(1)根据题意,分析可得:图形平移的距离就是线段BC1的长,进而在Rt△ABC中求得BC1=3cm,即图形平移的距离是3cm;

(2))先根据∠GFD=60°,得出∠AFA1=30°,即可得出图3中的△ABF绕点按F顺时针方向旋转30°到图5的位置;

(3)借助平移的性质,经过平移,对应点所连的线段平行且相等,对应线段平行且相等,即可证出△AHE≌△DHB1,从而得出△AEH和△HB1D的面积相等.

试题解析:(1)图形平移的距离就是线段BC1的长,

又∵在Rt△ABC中,长为4、宽为3,

∴BF=3cm,

∴平移的距离为3cm,

故答案为:3;

(2)∵∠GFD=60°,

∴∠AFA1=30°,

3中的△ABF绕点按F顺时针方向旋转30°到图5的位置

故答案为:F,顺时针,30°;

(3)相等,理由如下:

△AHE与△DHB1中,

∵∠FAB1=∠EDF=30°,

∵FD=FA,EF=FB=FB1

∴FD-FB1=FA-FE,即AE=DB1

又∵∠AHE=∠DHB1

∴△AHE≌△DHB1(AAS),

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A为函数 图象上一点,连结OA,交函数 的图象于点B,点Cx轴上一点,且AO=AC,求ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的方程有实数根,则满足________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BEAD交于点F

⑴求证:ΔABFΔEDF

⑵若将折叠的图形恢复原状,点FBC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的等边△ABO在平面直角坐标系的位置如图所示,点O为坐标原点,点Ax轴上,以点O为旋转中心,将△ABO按逆时针方向旋转60°,得到△OAB′,则点A′的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E在同一直线上.

(1)求斜坡CD的高度DE;

(2)求大楼AB的高度(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,∠A90°,过点CCEBDBD于点E,且CEAB

1)求证:△ABD≌△ECB

2)若ABAD,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠ABC∠ACB的平分线相交于点F,过点FDE∥BC,交ABD,交ACE,那么下列结论:

①△BDF△CEF都是等腰三角形;

②DE=BD+CE

③△ADE的周长为AB+AC

④BD=CE.其中正确的是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=mx2﹣2mx﹣3m是二次函数.

(1)如果该二次函数的图象与y轴的交点为(0,3),求m的值;

(2)在给定的坐标系中画出(1)中二次函数的图象.

查看答案和解析>>

同步练习册答案