精英家教网 > 初中数学 > 题目详情

【题目】如图,E,F分别是菱形ABCD的边AB,AD的中点,且AB=5,AC=6.

(1)求对角线BD的长;

(2)求证:四边形AEOF为菱形.

【答案】(1)DB=8;(2)见解析.

【解析】(1)利用菱形的性质结合勾股定理得出OB的长即可得出DB的长;

(2)利用三角形中位线定理进而得出四边形AEOF是平行四边形,再利用菱形的判定方法得出即可.

(1)∵四边形ABCD是菱形,

ACDB,AO=AC,BO=DB.

AC=6,AO=3.

AB=5,

OB==4,

DB=8;

(2)E,O分别是BA,BD的中点,

OEAD,OE=AD,即OEAF,OE=AF,

∴四边形AEOF是平行四边形.

又∵AB=AD,E,F分别是AB,AD的中点,

AE=AF,

∴平行四边形AEOF是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值: 其中x的值从不等式组的整数解中选取.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCDAB=AD=2A=60°BC=CD=3

1)求∠ADC的度数

2)求四边形ABCD的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是(﹣1,1),(0,0)和(1,0).
(1)如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;
(2)在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.

(1)若AE=CF;
①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料1:反射定律

当入射光线AO照射到平面镜上时,将遵循平面镜反射定律,即反射角(∠BOM)的大小等于入射角(∠AOM)的大小,显然,这两个角的余角也相等,其中法线(OM)与平面镜垂直,并且满足入射光线、反射光线(OB)与法线在同一个平面.

材料2:平行逃逸角

对于某定角∠AOB=α(0°<α<90°),点P为边OB上一点,从点P发出一光线PQ(射线),其角度为∠BPQ=β(0°<β<90°),当光线PQ接触到边OA和OB时会遵循反射定律发生反射,当光线PQ经过n次反射后与边OA或OB平行时,称角为定角α的n阶平行逃逸角,特别地,当光线PQ直接与OA平行时,称角β为定角α的零阶平行逃逸角.

(1)已知∠AOB=α=20°,

①如图1,若PQ∥OA,则∠BPQ=   °,即该角为α的零阶平行逃逸角;

②如图2,经过一次反射后的光线P1Q∥OB,此时的∠BPP1为α的平行逃逸角,求∠BPP1的大小;

③若经过两次反射后的光线与OA平行,请补全图形,并直接写出α的二阶平行逃逸角为   °;

(2)根据(1)的结论,归纳猜想对于任意角α(0°<α<90°),其n(n为自然数)阶平行逃逸角β=   (用含n和a的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式:
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM周长最短?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某个体经营户销售同一型号的A、B两种品牌的服装,平均每月共销售60件,已知两种品牌的成本和利润如表所示,设平均每月的利润为y元,每月销售A品牌x件.
(1)写出y关于x的函数关系式.
(2)如果每月投入的成本不超过6500元,所获利润不少于2920元,不考虑其他因素,那么销售方案有哪几种?
(3)在(2)的条件下要使平均每月利润率最大,请直接写出A、B两种品牌的服装各销售多少件?

A

B

成本(元/件)

120

85

利润(元/件)

60

30

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E、F分别为边AB、CD的中点,AC是对角线,过点BBG∥ACDA的延长线于点G.

(1)求证:CE∥AF;

(2)若∠G=90°,求证:四边形CEAF是菱形.

查看答案和解析>>

同步练习册答案