分析 设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=$\frac{90π•8}{180}$,解得r=4,然后利用扇形的半径等于圆锥的母线长和勾股定理计算圆锥的高.
解答 解:设圆锥的底面圆的半径为r,
根据题意得2πr=$\frac{90π•8}{180}$,解得r=2,
所以所围成的圆锥的高=$\sqrt{{8}^{2}-{2}^{2}}$=2$\sqrt{15}$.
故答案为2$\sqrt{15}$.
点评 本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了弧长公式和勾股定理.
科目:初中数学 来源: 题型:选择题
A. | 5 | B. | 2a+5 | C. | a-5 | D. | 2a |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com