科目:初中数学 来源: 题型:
阅读理解:配方法是中学数学的重要方法,用配方法可求最大(小)值。
对于任意正实数a、b,可作如下变形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根据上述内容,回答下列问题:在≥(a、b均为正实数)中,若ab为定值p,则a+b≥,当且仅当a、b满足 时,a+b有最小值.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b, 试根据图形验证≥成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数的图像上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连结DF、EF,求四边形ADFE面积的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
在△ABC中,∠C=90°,AC=12,BC=5,现在AC为轴旋转一周得到一个圆锥。则该圆锥的侧面积为 ( ) (原创)
(A)130π (B)90π (C)25π (D)65π
查看答案和解析>>
科目:初中数学 来源: 题型:
在△ABC中,∠C为锐角,分别以AB,AC为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S1﹣S2=,则S3﹣S4的值是 (改编)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,两个同心圆的圆心是O,大圆的半径为10,小圆的半径为6,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.
(1)求BD 的长;
(2)求∠ABE+2∠D的度数;
(3)求的值.(改编)
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,抛物线y=x2﹣x与x轴交于O,A两点.半径为1的动圆(⊙P),圆心从O点出发沿抛物线向靠近点A的方向移动;半径为2的动圆(⊙Q),圆心从A点出发沿抛物线向靠近点O的方向移动.两圆同时出发,且移动速度相等,当运动到P,Q两点重合时同时停止运动.设点P的横坐标为t.若⊙P与⊙Q相离,则t的取值范围是_____ ____ .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com