精英家教网 > 初中数学 > 题目详情
图中是抛物线形拱桥,当水面宽AB=8米时,拱顶到水面的距离CD=4米.如果水面上升1米,那么水面宽度为多少米?
.

试题分析:首先建立平面直角坐标系,设抛物线解析式为y=ax2,进而求出解析式,即可得出EF的长.
试题解析:如图所示建立平面直角坐标系,

设抛物线解析式为y=ax2
由已知抛物线过点B(4,-4),则-4=a×42
解得:a=-
∴抛物线解析式为:y=-x2
当y=-3,则-3=-x2
解得:x1=2,x2=-2
∴EF=4
答:水面宽度为4米.
考点: 二次函数的应用.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。

⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.
(1)求此抛物线的解析式;
(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,二次函数的图像经过点和点B,其中点B在第一象限,且OA=OB,cot∠BAO=2.

(1)求点B的坐标;
(2)求二次函数的解析式;
(3)过点B作直线BC平行于x轴,直线BC与二次函数图像的另一个交点为C,联结AC,如果点P在x轴上,且△ABC和△PAB相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一个二次函数的顶点A的坐标为(1,0),且图像经过点B(2,3).
(1)求这个二次函数的解析式.
(2)设图像与y轴的交点为C,记,试用表示(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司销售一种新型节能电子小产品,现准备从国内和国外两种销售方案中选择一种进行销售:①若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=-x+150,成本为20元/件,月利润为W(元);②若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,月利润为W(元).
(1)若只在国内销售,当x=1000(件)时,y=         (元/件);
(2)分别求出W、W与x间的函数关系式(不必写x的取值范围);
(3)若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=x2-(m-1)x+4的图像与x轴有且只有一个交点,则m的值为(  )
A.1或-3B.5或-3C.-5或3D.以上都不对

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=kx2﹣6x+3的图象与x轴有交点,则k的取值范围是(  )
A.k<3B.k<3且k≠0
C.k≤3D.k≤3且k≠0

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

根据下列表格中二次函数y=ax2+bx+c的自变量与函数值的对应值,判断方程ax2+b x+c=0(a≠0)的一个解的范围是(   ) 

6.17
6.18
6.19
6.20
y=ax2+bx+c
-0.03
-0.01


A.6<x<6.17        B.6.17<x<6.18
C.6.18<x<6.19    D.6.19<x<6.20

查看答案和解析>>

同步练习册答案