精英家教网 > 初中数学 > 题目详情
阅读下面材料:
小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.
小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.
请你回答:图1中∠APB的度数等于
150°
150°

参考小伟同学思考问题的方法,解决下列问题:
(1)如图3,在正方形ABCD内有一点P,且PA=2
2
,PB=1,PD=
17
,则∠APB的度数等于
135°
135°
,正方形的边长为
13
13

(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=
13
,则∠APB的度数等于
120°
120°
,正六边形的边长为
7
7

分析:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,根据旋转的性质可得P′A=PA,P′C=PB,∠PAP′=60°,然后求出△APP′是等边三角形,根据等边三角形的性质求出PP′=PA=3,∠AP′P=60°,再利用勾股定理逆定理求出∠PP′C=90°,然后求出∠AP′C,即为∠APB的度数;
(1)把△APB绕点A逆时针旋转90°得到△ADP′,根据旋转的性质可得P′A=PA,P′D=PB,∠PAP′=90°,然后判断出△APP′是等腰直角三角形,根据等腰直角三角形的性质求出PP′,∠AP′P=45°,再利用勾股定理逆定理求出∠PP′D=90°,然后求出∠AP′D,即为∠APB的度数;再求出点P′、P、B三点共线,过点A作AE⊥PP′于E,根据等腰直角三角形的性质求出AE=PE=
1
2
PP′,然后求出BE,在Rt△ABE中,利用勾股定理列式求出AB即可;
(2)把△APB绕点A逆时针旋转120°得到△AFP′,根据旋转的性质可得P′A=PA,P′F=PB,∠PAP′=120°,然后求出△APP′是底角为30°的等腰三角形,过点A作AM⊥PP′于M,设PP′与AF相交于N,求出AM=1,再求出PP′,∠AP′P=30°,再利用勾股定理逆定理求出∠PP′F=90°,然后求出∠AP′F,即为∠APB的度数;根据P′F、AM的长度得到P′F=AM,利用“角角边”证明△AMN和△FP′N全等,根据全等三角形对应边相等可得AN=FN,P′N=MN,然后求出MN,在Rt△AMN中,利用勾股定理列式求出AN,然后求出AF即可.
解答:解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,
由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,
∴△APP′是等边三角形,
∴PP′=PA=3,∠AP′P=60°,
∵PP′2+P′C2=32+42=25,PC2=52=25,
∴PP′2+P′C2=PC2
∴∠PP′C=90°,
∴∠AP′C=∠AP′P+∠PP′C=60°+90°=150°;
故∠APB=∠AP′C=150°;

(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,
由旋转的性质,P′A=PA=2
2
,P′D=PB=1,∠PAP′=90°,
∴△APP′是等腰直角三角形,
∴PP′=
2
PA=
2
×2
2
=4,∠AP′P=45°,
∵PP′2+P′D2=42+12=17,PD2=
17
2=17,
∴PP′2+P′D2=PD2
∴∠PP′D=90°,
∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,
故,∠APB=∠AP′D=135°,
∵∠APB+∠APP′=135°+45°=180°,
∴点P′、P、B三点共线,
过点A作AE⊥PP′于E,
则AE=PE=
1
2
PP′=
1
2
×4=2,
∴BE=PE+PB=2+1=3,
在Rt△ABE中,AB=
AE2+BE2
=
22+32
=
13


(2)如图4,∵正六边形的内角为
1
6
×(6-2)•180°=120°,
∴把△APB绕点A逆时针旋转120°得到△AFP′,
由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,
∴∠APP′=∠AP′P=
1
2
(180°-120°)=30°,
过点A作AM⊥PP′于M,设PP′与AF相交于N,
则AM=
1
2
PA=
1
2
×2=1,
P′M=PM=
PA2-AM2
=
22-12
=
3

∴PP′=2PM=2
3

∵PP′2+P′F2=(2
3
2+12=13,PF2=
13
2=13,
∴PP′2+P′F2=PF2
∴∠PP′F=90°,
∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,
故,∠APB=∠AP′F=120°,
∵P′F=AM=1,
∵△AMN和△FP′N中,
∠PP′F=∠AMN=90°
∠P′NF=∠ANM
P′F=AM

∴△AMN≌△FP′N(AAS),
∴AN=FN,P′N=MN=
1
2
P′M=
3
2

在Rt△AMN中,AN=
AM2+MN2
=
12+(
3
2
)
2
=
7
2

∴AF=2AN=2×
7
2
=
7

故答案为:150°;(1)135°,
13
;(2)120°,
7
点评:本题考查了旋转的性质,等边三角形的性质,正方形的性质,勾股定理以及勾股定理逆定理的应用,全等三角形的判定与性质,(1)(2)两问求多边形的边长有一定的难度,作辅助线构造出直角三角形与全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读下面材料:
小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.
精英家教网
小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).
参考小伟同学的思考问题的方法,解决下列问题:
如图3,△ABC的三条中线分别为AD,BE,CF.
(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•延庆县二模)阅读下面材料:
小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.
小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).
请你回答:AP的最大值是
6
6

参考小伟同学思考问题的方法,解决下列问题:
如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是
2
2
+2
6
(或不化简为
32+16
3
2
2
+2
6
(或不化简为
32+16
3
.(结果可以不化简)

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•门头沟区一模)阅读下面材料:
小伟遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF=45°,连接EF,求证:DE+BF=EF.

小伟是这样思考的:要想解决这个问题,首先应想办法将这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是将△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.
请回答:在图2中,∠GAF的度数是
45°
45°

参考小伟得到的结论和思考问题的方法,解决下列问题:
(1)如图3,在直角梯形ABCD中,AD∥BC(AD>BC),∠D=90°,AD=CD=10,E是CD上一点,若∠BAE=45°,DE=4,则BE=
58
7
58
7

(2)如图4,在平面直角坐标系xOy中,点B是x轴上一动点,且点A(-3,2),连接AB和AO,并以AB为边向上作正方形ABCD,若C(x,y),试用含x的代数式表示y,则y=
x+1
x+1

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2011•北京)阅读下面材料:
小伟遇到这样一个问题,如图1,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O.若梯形ABCD的面积为1,试求以AC,BD,AD+BC的长度为三边长的三角形的面积.

小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折,旋转,平移的方法,发现通过平移可以解决这个问题.他的方法是过点D作AC的平行线交BC的延长线于点E,得到的△BDE即是以AC,BD,AD+BC的长度为三边长的三角形(如图2).
参考小伟同学的思考问题的方法,解决下列问题:
如图3,△ABC的三条中线分别为AD,BE,CF.
(1)在图3中利用图形变换画出并指明以AD,BE,CF的长度为三边长的一个三角形(保留画图痕迹);
(2)若△ABC的面积为1,则以AD,BE,CF的长度为三边长的三角形的面积等于_____.

查看答案和解析>>

同步练习册答案