精英家教网 > 初中数学 > 题目详情

【题目】已知在ABC中,BAC90°M是边BC的中点,BC的延长线上的点N满足AMANABC的内切圆与边ABAC的切点分别为EF,延长EF分别与ANBC的延长线交于PQ,则=(  )

A. 1B. 0.5C. 2D. 1.5

【答案】A

【解析】

取△ACB的内切圆的圆心是O,连接OEOF,得出正方形AEOF,求出AEAF,推出∠AEF=∠AFE=∠CFQ,根据直角三角形斜边上中线性质求出AMMC,推出∠MCA=∠MAC,根据∠BAC=∠MAG=∠MAN90°,求出∠GAE=∠MAC=∠MCA,∠EAM=∠CAP,根据三角形的外角性质得出∠GAE=∠APE+AEP,∠MCA=∠Q+CFQ,求出∠Q=∠NPQ,推出PNNQ即可.

取△ACB的内切圆的圆心是O,连接OEOF,作NA的延长线AG

OEABOFACOEOF

∵∠BAC90°,

四边形AEOF是正方形,

AEAF

∴∠AEFAFE

∵∠BAC90°,M为斜边BC上中线,

AMCMBM

∴∠MACMCA

∵∠BAC90°,ANAM

∴∠BACMAGMAN90°,

∴∠GAE+EAM90°,EAM+MAC90°,MAC+CAN90°,

∴∠GAEMACMCAEAMCAP

∵∠GAEAPE+AEPMCAQ+CFQ

∵∠AEFAFECFQEPANPQ

∴∠QNPQ

PNQN

1

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG.同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过多少秒时.直线MN和正方形AEFG开始有公共点?(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形纸片ABCD中,,翻折矩形纸片,使点A落在对角线DB上的点F处,折痕为DE,打开矩形纸片,并连接EF

的长为多少;

AE的长;

BE上是否存在点P,使得的值最小?若存在,请你画出点P的位置,并求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x千克.

(1)请分别写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;

(2)小明选择哪家快递公司更省钱?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校体育组为了解全校学生“最喜欢的一项球类项目”,随机抽取了部分学生进行调查,下面是根据调查结果绘制的不完整的统计图:

请你根据统计图回答下列问题:

(1)喜欢乒乓球的学生所占的百分比是多少?并请补全条形统计图;

(2)请你估计全校500名学生中最喜欢“排球”项目的有多少名?

(3)在扇形统计图中,“篮球”部分所对应的圆心角是多少度?

(4)篮球教练在制定训练计划前,将从最喜欢篮球项目的甲、乙、丙、丁四名同学中任选两人进行个别座谈,请用列表法或树状图法求抽取的两人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=ax+b与反比例函数(x>0)的图像交于点A25)和点Bm1.

1)确定这两个函数的表达式;

2)求出△OAB的面积;

3)结合图像,直接写出不等式的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点Bx轴上,AC=BC,过点BBDx轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.

(1)求抛物线的解析式及点D的坐标;

(2)当CMN是直角三角形时,求点M的坐标;

(3)试求出AM+AN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线C1:y=a(x+1)2﹣4的顶点为C,与x轴相交于A、B两点(点A在点B的左边),点B的横坐标是1.

(1)求点C的坐标及a 的值;

(2)如图②,抛物线C2与C1关于x轴对称,将抛物线C2向右平移4个单位,得到抛物线C3.C3与x轴交于点B、E,点P是直线CE上方抛物线C3上的一个动点,过点P作y轴的平行线,交CE于点F.

①求线段PF长的最大值;

②若PE=EF,求点P的坐标.

查看答案和解析>>

同步练习册答案