精英家教网 > 初中数学 > 题目详情

如图,抛物线y=x2+mx+n交x轴于A、B两点,交y轴于点C,点P是它的顶点,点A的坐标是(1,0),点B的坐标是(﹣3,0).

(1)求m、n的值;
(2)求直线PC的解析式.
[温馨提示:抛物线y=ax2+bx+c(a≠0)的顶点坐标为(﹣)].

(1)m=1,n=-;(2)直线PC的解析式为y=x-

解析试题分析:(1)由于已知抛物线与x的交点坐标,则可设交点式y=(x+3)(x-1),然后展开整理为一般式即可得到m、n的值;
(2)先确定C嗲坐标,再根据对称性确定顶点P的横坐标,把x=-1代入二次函数解析式可计算出P点的纵坐标,然后利用待定系数法确定直线PC的解析式.
试题解析:(1)设抛物线的解析式为y=(x+3)(x-1)=x2+x-
所以m=1,n=-
(2)∵y=x2+x-
∴C点坐标为(0,-),
∵A的坐标是(1,0),点B的坐标是(-3,0),
∴抛物线的对称为直线x=-1,
把x=-1代入y=x2+x-得y=-1-=-2,
∴P点坐标为(-1,-2),
设直线PC的解析式为y=kx+b,
把P(-1,-2)、C(0,-)代入得
,解得
∴直线PC的解析式为y=x-
考点: 1.待定系数法求二次函数解析式;2.待定系数法求一次函数解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D.

(1)求抛物线的解析式;
(2)在第三象限内,F为抛物线上一点,以A、E、F为顶点的三角形面积为3,求点F的坐标;
(3)点P从点D出发,沿对称轴向下以每秒1个单位长度的速度匀速运动,设运动的时间为t秒,当t为何值时,以P、B、C为顶点的三角形是直角三角形?直接写出所有符合条件的t值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数的图象与x轴交于A、B两点,A点在原点的左则,B点的坐标为(3,0),与y轴交于C(0,―3)点,点P是直线BC下方的抛物线上一动点。

⑴求这个二次函数的表达式;
⑵连结PO、PC,在同一平面内把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由;
⑶当点P运动到什么位置时,四边形ABPC的面积最大,并求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某跳水运动员进行10m跳台跳水的训练时,身体(看成一点)在空中的运动路线是如图所示坐标系下经过原点O的一条抛物线(图中标出的数据为己知条件).在跳某个规定动作时,正确情况下,该运动员在空中的最高处距水面m,入水处与池边的距离为4m, 同时,运动员在距水面高度为5m以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.

(l)求这条抛物线的解析式;
(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为,问:此次跳水会不会失误?通过计算说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知一个二次函数的图像经过点(4,1)和(,6).
(1)求这个二次函数的解析式;
(2)求这个二次函数图像的顶点坐标和对称轴.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数y=ax2+c(a<0)的图象过正方形ABOC的三个顶点A.B.C,求ac的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A、B两点,与y轴交于点C.

(1)分别求出点A、B、C的坐标;
(2)设抛物线的顶点为M,求四边形ABMC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线过x轴上两点A(9,0),C(-3,0),且与y轴交于点B(0,-12).

(1)求抛物线的解析式;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动.问当t为何值时,△APQ∽△AOB?
(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.
①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点M运动到何处时,四边形CBNA的面积最大?求出此时点M的坐标及四边形CBNA面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数.
(1)求顶点坐标和对称轴方程;
(2)求该函数图象与x标轴的交点坐标;
(3)指出x为何值时,;当x为何值时,.

查看答案和解析>>

同步练习册答案